首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interferons (IFNs) have been reported to have pleiotrophic effects including the ability to induce the production of other cytokines in several cell types. Tumour necrosis factor alpha (TNF-alpha) is pro-inflammatory cytokine a known to be produced by a variety of cells including human keratinocytes. In the present study, we sought to determine the effects of IFNs on TNF-alpha production from human keratinocytes. IFN-gamma (50-100 ng/ml) induced TNF-alpha production dose dependently, but no induction of TNF-alpha was observed with IFN-alpha or IFN-beta. Since in the epidermis cytokines often work with in a cascade fashion and keratinocytes are a source of primary cytokine, IL-1 alpha, whether combined treatment with IFN-gamma and IL-1 alpha had a synergistic effect on TNF-alpha production was examined. Combined treatment with IFN-gamma (100 ng/ml) and IL-1 alpha (10 ng/ml) induced 2-3-fold higher level of TNF-alpha than IL-1 alpha alone. These results suggest that IFN-gamma is a positive regulator for the production of TNF-alpha from human keratinocytes and likely to increase skin inflammation.  相似文献   

3.
The purpose of this study was to investigate the relationships between macrophage production of TNF-alpha and female hormones. Northern blot hybridization experiments showed that the female sex steroid hormone, progesterone, decreases steady state levels of TNF-alpha mRNA in LPS-activated mouse macrophages (RAW 264.7 and ANA-1 cells) in vitro. The production of intracellular and secreted TNF-alpha protein, as determined by ELISA, was decreased in both progesterone- and dexamethasone-treated, LPS-stimulated macrophages. Estrogen had no effect on expression of the TNF-alpha gene in mouse macrophages and did not alter progesterone-mediated suppression. Additional experiments conducted to investigate the mechanism of action of progesterone showed that this hormone, like dexamethasone, elevates steady state mRNA levels of IkappaB alpha and increases the levels of IkappaB alpha protein that are translocated from the cytoplasm to the nucleus. Thus, progesterone is a potent inhibitor of steady state levels TNF-alpha mRNA and TNF-alpha protein production in activated macrophages and may achieve this result through effects on an inhibitor of NF-kappaB.  相似文献   

4.
5.
Cytokines are hormone-like proteins which mediate and regulate inflammatory and immune responses. The purpose of this study was to investigate the effect of lipopolysaccharide (LPS) and inflammatory cytokines on regulation of interleukin-6 (IL-6) production by human gingival fibroblasts (HGF). The HGF cell lines used in this study, H-CL and F-CL, were established by the explant technique from healthy gingival tissue. Cultured cells were grown to confluency and incubated with various concentrations of LPS from Escherichia coli or Porphyromonas gingivalis or with the recombinant human cytokine tumor necrosis factor alpha (TNF-alpha), IL-1alpha, or IL-1beta. Culture supernatants were collected at various times and assessed for IL-6 production by enzyme-linked immunosorbent assay. Total RNA was isolated from the harvested cells and used to assess levels of IL-6 mRNA by the RNase protection assay. Both LPS preparations induced IL-6 production (1 to 4 ng of IL-6 per ml) by both HGF cell lines. Although TNF-alpha stimulated IL-6 production by HGF, > 10-fold-larger amounts were induced with IL-1alpha and IL-1beta. Furthermore, the addition of both IL-1alpha and TNF-alpha to cultured cells resulted in approximately 600- to 800-fold-higher levels of IL-6 than seen in control cultures, suggesting that these cytokines synergistically induced IL-6 production by HGF. IL-6 message in cultured cells was upregulated 20-fold by TNF-alpha, 1,000-fold by IL-1alpha and IL-1beta, and 1,400-fold by IL-1alpha plus TNF-alpha. IL-1alpha and TNF-alpha alone upregulate IL-6 production in a dose- and time-dependent fashion. The addition of IL-1alpha and TNF-alpha to cultured HGF cells resulted in a synergistic induction of IL-6 after 8 h of incubation and when greater than 10 pg of this combination per ml was used. Our studies show that inflammatory cytokines are hundreds of times more potent than LPS in stimulating IL-6 production by HGF.  相似文献   

6.
To target tumor necrosis factor alpha (TNF-alpha) to tumor cells, recombinant DNA techniques were used to construct and express the fused gene VKLVH-TNF-alpha, which encodes the secreted form of single-chain fusion protein sFV/TNF-alpha in Escherichia coli. sFV/TNF-alpha was secreted into the culture medium and purified by affinity chromatography. The production of the fusion protein in the culture medium under the optimal conditions of 30 degrees C and 37 micromol of isopropyl-beta-D-thiogalactopyranoside (IPTG) per liter was 16- and 5-fold higher than that under the standard conditions of 37 degrees C and 1 mmol of IPTG per liter. Fusion protein excretion into culture medium with 2% glycine, 1% Triton X-100, or both of these two chemicals was either 14-, 38-, or 170-fold higher, respectively than that without the two chemicals. The final yield of sFV/TNF-alpha was estimated to be 50 mg/liter. The loss of integrity of the cellular membrane may be a potential mechanism for enhancement of fusion protein production and excretion by treatment with glycine and Triton X-100. This study thus provides a practical, large-scale method for more efficient production of the heterologous fusion protein sFV/TNF-alpha in E. coli by using glycine and Triton X-100.  相似文献   

7.
The understanding of immune surveillance and inflammation regulation in cerebral tissue is essential in the therapy of neuroimmunological disorders. We demonstrate here that primary human glial cells were able to produce alpha- and beta-chemokines (IL-8 > growth related protein alpha (GROalpha) > RANTES > microphage inflammatory protein (MIP)-1alpha and MIP-1beta) in parallel to PGs (PGE2 and PGF2alpha) after proinflammatory cytokine stimulation: TNF-alpha + IL-1beta induced all except RANTES, which was induced by TNF-alpha + IFN-gamma. Purified cultures of astrocytes and microglia were also induced by the same combination of cytokines, to produce all these mediators except MIP-1alpha and MIP-1beta, which were produced predominantly by astrocytes. The inhibition of PG production by indomethacin led to a 37-60% increase in RANTES, MIP-1alpha, and MIP-1beta but not in GROalpha and IL-8 secretion. In contrast, inhibition of IL-8 and GRO activities using neutralizing Abs resulted in a specific 6-fold increase in PGE2 but not in PGF2alpha production by stimulated microglial cells and astrocytes, whereas Abs to beta-chemokines had no effect. Thus, the production of PGs in human glial cells down-regulates their beta-chemokine secretion, whereas alpha-chemokine production in these cells controls PG secretion level. These data suggest that under inflammatory conditions, the intraparenchymal production of PGs could control chemotactic gradient of beta-chemokines for an appropriate effector cell recruitment or activation. Conversely, the elevated intracerebral alpha-chemokine levels could reduce PG secretion, preventing the exacerbation of inflammation and neurotoxicity.  相似文献   

8.
Regulation by thalidomide and phenylphthalimide analogs (FPP-33 and PPS-33) of TNF-alpha production is specific to cell type and to inducer, i.e., (i) the compounds enhance TPA-induced TNF-alpha production by human leukemia HL-60 cells, while they inhibit TPA-induced TNF-alpha production by another human leukemia cell line, THP-1, and (ii) the compounds inhibit TNF-alpha production by both HL-60 and THP-1 cells when the cells are stimulated with okadaic acid (OA). The structure-activity relationships of these compounds are similar in the four assay systems (TPA/HL-60, TPA/THP-1, OA/HL-60, and OA/THP-1). However, optically active analogs, (S)- and (R)-alpha-methylthalidomides, show distinct bidirectional regulatory effects on TNF-alpha production, i.e., only the (S)-form shows TNF-alpha production-enhancing activity in the TPA/HL-60 assay system, while the (R)-form shows much more potent TNF-alpha production-inhibiting activity than the (S)-form in the other assay systems.  相似文献   

9.
10.
Nitric oxide (NO measured as nitrite, NO2-) is the major effector molecule produced by activated macrophages for in vitro cytotoxicity against Entamoeba histolytica trophozoites. In this study, we determine whether tumor necrosis factor alpha (TNF-alpha) produced by activated bone marrow-derived macrophages (BMM) is involved in the induction of the inducible NO synthase gene (mac-NOS) for NO-dependent amebicidal activity. TNF-alpha alone did not directly induce macrophage NO2- production to kill amebae; however, in combination with increasing concentrations of TNF-alpha and gamma interferon (IFN-gamma), BMM amebicidal activity and NO2- production progressively increased and showed a significant linear correlation. Antiserum to TNF-alpha and the NO synthase inhibitor NG-monomethyl L-arginine (L-NMMA) inhibited the synergistic effects of TNF-alpha and IFN-gamma. BMM activated with increasing concentrations of lipopolysaccharide (LPS) and IFN-gamma showed a significant linear correlation between TNF-alpha release and NO2- production. Antiserum to TNF-alpha suppressed TNF-alpha release, NO2- production, and amebicidal activity by 93, 53, and 86%, respectively. L-NMMA diminished NO2- production by 74% and macrophage amebicidal activity by 83% but had no effect on TNF-alpha release. Quantification by Northern (RNA) blot analyses demonstrated that IFN-gamma in combination with TNF-alpha or LPS increased markedly the accumulation of mac-NOS and TNF-alpha mRNAs in a time-dependent manner with a concomitant increase in NO and TNF-alpha production. Peak induction of mac-NOS occurred after 24 h, whereas TNF-alpha mRNA was rapidly expressed after 4 h and remained stable for 48 h. Taken together, these data argue that TNF-alpha augments NO-dependent macrophage cytotoxicity against E. histolytica via elevated levels of mac-NOS mRNA expression which may be associated with the accumulation of TNF-alpha mRNA.  相似文献   

11.
12.
The effects of tumor necrosis factor alpha (TNF-alpha) on arachidonic acid (AA) metabolism were investigated by prelabeling the human osteoblastic osteosarcoma cell line, G292, with [3H]AA. TNF-alpha differentially stimulates cyclooxygenase and lipoxygenase pathways of AA metabolism in a dose response manner in the cells. The highest concentration of TNF-alpha (10(-8)M) significantly increased the cyclooxygenase pathway, with prostaglandin E2 (PGE2) being a major product. However, at the lowest concentration (10(-10)M) of TNF-alpha, 15-hydroxyeicosatetraenoic acid (HETE) production was significantly increased, with no significant effects on the other identifiable products. When the concentration of TNF-alpha was increased to 10(-9) M leukotriene B4 (LTB4), 15-, 12-, and 5-HETE were significantly increased. The calcium ionophore A23187 (10(-6) M) significantly increased 15-HETE production, without significantly affecting cyclooxygenase metabolites. However, a combination of TNF-alpha (10(-8)M) and A23187 (10(-6)M) caused an inhibitory effect on each agent-induced PGE2 or 15-HETE production.  相似文献   

13.
Tumor necrosis factor-alpha (TNF-alpha) influences hormone synthesis of many ovarian cell types and can also exert cytotoxic effects, possibly by increasing the synthesis of prostaglandins. The purpose of the present study was to characterize the mechanism of TNF-alpha-stimulated prostaglandin; F2 alpha (PGF2 alpha) production in cultured bovine luteal cells. Inhibitors of RNA and protein synthesis (actinomycin D and cycloheximide, respectively) completely blocked TNF-alpha-stimulated PGF2 alpha production. The phospholipase A2 inhibitor, aristolochic acid, prevented TNF-alpha-stimulated, but not basal, PGF2 alpha production, whereas the phospholipase C inhibitor, compound 48/80, was without effect. The addition of arachidonic acid to cultures did not overcome the inhibitory effects of cycloheximide or aristolochic acid. In conclusion, TNF-alpha-stimulated prostaglandin production by bovine luteal cells is dependent upon the stimulation of phospholipase A2 through mechanisms which require synthesis of RNA and protein.  相似文献   

14.
15.
Under a variety of conditions, alveolar macrophages can generate early response cytokines (TNF-alpha, IL-1), complement components, and chemotactic cytokines (chemokines). In the current studies, we determined the requirements for TNF-alpha and the complement activation product C5a in chemokine production in vitro and in vivo. Two rat CXC chemokines (macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant (CINC)) as well as three rat CC chemokines (MIP-1alpha, MIP-1beta, and monocyte chemoattractant protein (MCP)-1) were investigated. Chemokine generation in vitro was studied in rat alveolar macrophages stimulated with IgG immune complexes in the absence or presence of Abs to TNF-alpha or C5a. The rat lung injury model induced by IgG immune complex deposition was employed for in vivo studies. Abs to TNF-alpha or C5a were administered intratracheally or i.v., and effects on chemokine levels in bronchoalveolar lavage fluids were quantitated by ELISA. Both in vitro and in vivo studies demonstrated the requirements for TNF-alpha and C5a for full generation of CXC and CC chemokines. In vitro and in vivo blockade of TNF-alpha or C5a resulted in significantly reduced production of chemokines. Supernatant fluids from in vitro-stimulated macrophages revealed by Western blot analysis the presence of C5a/C5adesArg, indicating intrinsic generation of C5a/C5adesArg by alveolar macrophages and explaining the higher efficiency of intratracheal vs i.v. blockade of C5a in reducing chemokine production. These results underscore the central role of both TNF-alpha and C5a, which appear to function as autocrine activators to promote CXC and CC chemokine generation by alveolar macrophages.  相似文献   

16.
OBJECTIVE AND DESIGN: We investigated the anti-inflammatory effects of 16 beta-methyl-17 alpha,21-diesterified glucocorticoids which are well known as potent topical glucocorticoids in man on endotoxin-induced uveitis (EIU) in rats. MATERIAL: Female Lewis rats were used. TREATMENT: Glucocorticoids were instilled (0.01%-1.0%) or subcutaneously injected (0.1-10 mg/kg) to rats. METHODS: To elicit EIU, LPS (500 micrograms/kg) was injected into the footpad of rats. Twelve hours after LPS injection, cell number in aqueous humor was counted by flow cytometry. Endotoxin-induced in vivo tumor necrosis factor-alpha (TNF-alpha) production was also examined. RESULTS: 16 beta-methyl-17 alpha,21-diesterified glucocorticoids showed no effects or some enhancement of cell infiltration into the aqueous humor in EIU by topical instillation. Systemic injection of these glucocorticoids showed only weak inhibition of cell infiltration and TNF-alpha production. On the other hand, betamethasone phosphate strongly inhibited the cell infiltration and TNF-alpha production. Combined systemic injection of 16 beta-methyl-17 alpha,21-diesterified glucocorticoids and betamethasone phosphate reduced the inhibitory effects of the latter. CONCLUSIONS: These results suggest that 16 beta-methyl-17 alpha,21-diesterified glucocorticoids might act as partial agonists of glucocorticoid in rats.  相似文献   

17.
OBJECTIVE: To determine the effects of interleukin 1alpha (IL-1alpha), tumor necrosis factor-alpha (TNF-alpha), dexamethasone, and 17beta-estradiol on the expression of cyclooxygenase-1 (COX-1) and COX-2 in bovine chondrocytes. METHODS: Northern blot analysis was used to quantify COX-1 and COX-2 mRNA expression in primary cultures of bovine chondrocytes and prostaglandin production to evaluate COX activity. RESULTS: IL-1alpha and TNF-alpha increased the expression of COX-2. This effect was independent of de novo protein synthesis and dependent on increased mRNA stability in the case of IL-1alpha. Dexamethasone inhibited the effects of both cytokines. 17beta-estradiol inhibited COX-2 mRNA expression in basal conditions, but had no effect on COX-2 expression induced by cytokines. The specific COX-2 inhibitor compound NS 398 prevented the increase in prostaglandin E2 (PGE2) production induced by the cytokines. COX-1 levels remained stable with all treatments. CONCLUSION: Increase in mRNA stability is a mechanism implicated in the induction of COX-2 by some cytokines. The effects of IL-1alpha and TNF-alpha on PGE2 production are mainly due to an increase in COX-2 activity as shown by the effect of compound NS 398. 17beta-estradiol inhibits COX-2 mRNA expression in basal conditions, suggesting that estrogens could be implicated in the control of cartilage metabolism.  相似文献   

18.
We have analyzed the production of tumor necrosis factor alpha (TNF-alpha) induced by in vitro infection with African swine fever (ASF) virus (ASFV) and the systemic and local release of this inflammatory cytokine upon in vivo infection. An early increase in TNF-alpha mRNA expression was detected in ASFV-infected alveolar macrophages, and high levels of TNF-alpha protein were detected by ELISA in culture supernatants from these cells. When animals were experimentally infected with a virulent isolate (E-75), enhanced TNF-alpha expression in mainly affected organs correlated with viral protein expression. Finally, elevated levels of TNF-alpha were detected in serum, corresponding to the onset of clinical signs. TNF-alpha has been reported to be critically involved in the pathogenesis of major clinical events in ASF, such as intravascular coagulation, tissue injury, apoptosis, and shock. In the present study, TNF-alpha containing supernatants from ASFV-infected cultures induced apoptosis in uninfected lymphocytes; this effect was partially abrogated by preincubation with an anti-TNF-alpha specific antibody. These results suggest a relevant role for TNF-alpha in the pathogenesis of ASF.  相似文献   

19.
We have developed a direct immunocytochemical technique to identify cytokine and chemokine production in epidermal Langerhans cells (LC) and in vitro derived CD14-, CD1a+, CD83+, CD40+ dendritic cells (DC) at the single cell level. Formaldehyde fixation combined with saponin permeabilization preserved cellular morphology and generated a characteristic juxtanuclear staining signal due to the accumulation of cytokine to the Golgi organelle. This approach was used for the assessment of TNF-alpha, IL-6, IL-8, IL-10, IL-12, GM-CSF, MIP-1alpha, MIP-1beta and RANTES producing cells. In contrast, a diffuse cytoplasmic staining was evident for IL-1ra, IL-1alpha and IL-1beta production. IL-1ra and IL-1alpha were expressed in 10-25% of unstimulated cultured cells, while all the other cytokines were undetectable. IL-1ra, IL-1alpha and IL-1beta were also the dominating cytokines, expressed in up to 85% of the DC, after 3 h of LPS stimulation. A significantly lower number of cells (0-5%) synthesized TNF-alpha, IL-6, IL-10, IL-12 and GM-CSF. The incidence of chemokine producing cells (IL-8, RANTES, MIP-1alpha, MIP-1beta) peaked 10 h after LPS stimulation in up to 60% of the DC. Both immature CD83- and mature CD83+ DC as well as LC had a similar cytokine production pattern. Thus, in comparison to monocytes, LPS stimulation of DC generated a lower incidence of TNF-alpha, IL-6, IL-10 and IL-12 producing cells while IL-1 was expressed in a comparable number of cells.  相似文献   

20.
Skeletal muscle atrophy and weakness are thought to be stimulated by tumor necrosis factor alpha (TNF-alpha) in a variety of chronic diseases. However, little is known about the direct effects of TNF-alpha on differentiated skeletal muscle cells or the signaling mechanisms involved. We have tested the effects of TNF-alpha on the mouse-derived C2C12 muscle cell line and on primary cultures from rat skeletal muscle. TNF-alpha treatment of differentiated myotubes stimulated time- and concentration-dependent reductions in total protein content and loss of adult myosin heavy chain (MHCf) content; these changes were evident at low TNF-alpha concentrations (1-3 ng/ml) that did not alter muscle DNA content and were not associated with a decrease in MHCf synthesis. TNF-alpha activated binding of nuclear factor kappaB (NF-kappaB) to its targeted DNA sequence and stimulated degradation of I-kappaBalpha, an NF-kappaB inhibitory protein. TNF-alpha stimulated total ubiquitin conjugation whereas a 26S proteasome inhibitor (MG132 10-40 microM) blocked TNF-alpha activation of NF-kappaB. Catalase 1 kU/ml inhibited NF-kappaB activation by TNF-alpha; exogenous hydrogen peroxide 200 microM activated NF-kappaB and stimulated I-kappaBalpha degradation. These data demonstrate that TNF-alpha directly induces skeletal muscle protein loss, that NF-kappaB is rapidly activated by TNF-alpha in differentiated skeletal muscle cells, and that TNF-alpha/NF-kappaB signaling in skeletal muscle is regulated by endogenous reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号