首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
提出一种新的针肋结构,采用直径为0.25 mm的圆柱型针肋,在一定的错排和顺排相结合的优化布置方式下,能获得较高的换热效率.在三维空间上的对流换热模拟表明,铜制的针肋结构的换热系数要高出百叶窗翅片24%~34%,而流阻仅高出10%~16%.总换热量取决于翅片材料的导热性能,导热系数越高,针肋的强化作用约明显.本文提出的针肋翅片结构可以用来制造紧凑性更高的换热器.  相似文献   

3.
高功率微波运用的圆波导劈形端口辐射器(Vlasov-Nakajima辐射器)的辐射场可视为由平开口圆波导的辐射场和在该辐射场中的劈形圆波导段的散射场叠加而成。运用等效电磁流原理数值求解Kirchhoff-kottler积分获得圆波导TM01模的辐射场,再应用物理光学方法计算劈形段的散射场,并将计算的远场方向图与实验结果比较,获得较满意的一致。  相似文献   

4.
圆波导劈形端口辐射器的数值分析   总被引:2,自引:8,他引:2       下载免费PDF全文
 高功率微波运用的圆波导劈形端口辐射器(Vlasov-Nakajima辐射器)的辐射场可视为由平开口圆波导的辐射场和在该辐射场中的劈形圆波导段的散射场叠加而成。运用等效电磁流原理数值求解Kirchhoff-kottler积分获得圆波导TM01模的辐射场,再应用物理光学方法计算劈形段的散射场,并将计算的远场方向图与实验结果比较,获得较满意的一致。  相似文献   

5.
6.
2kW行波加速器加速管冷却系统的数值优化设计   总被引:1,自引:2,他引:1       下载免费PDF全文
 利用工程设计分析软件I DEAS,对高功率加速管的冷却系统进行了计算机辅助设计研究,并通过对不同冷却条件下加速管的温度场、冷却系统的冷却效果进行的数值模拟,实现了加速管冷却系统的优化设计。这可为高束流功率低能电子直线加速器的设计提供参考。  相似文献   

7.
运用数值计算的方法对仿螺旋肋片内冷通道内的流动特性和传热特性进行了研究,共建立五组模型,分析了入口冷气雷诺数和肋片排布方式对壁面换热和通道阻力特性的影响规律.研究结果表明:(1)随着肋片与主流方向的夹角α的增大,壁面换热增强,同时通道内平均阻力系数显著增大.(2)随着入口冷气雷诺数的增大,壁面平均努塞尔数Nu增大,平均阻力系数Eu减小.(3)改变肋片倾斜角β可使综合性能提高,且存在最佳值.在研究范围内,α=15°,β=15°时综合性能最好.  相似文献   

8.
本文针对微针肋顶端间隙诱导产生的加速流对流体流动和传热的影响,采用计算流体力学(CFD)模拟与分析软件进行了三维数值模拟。模型采用有限体积法离散、SIMPLEC算法进行层流计算。模拟结果表明,不同肋端间隙对针肋内部流体流动和传热特性有重要影响。在本文的模拟条件下,定流量和定泵功下的最优无量纲间隙(肋端州隙比肋茸径)分别...  相似文献   

9.
针对螺旋内肋管内壁面结构复杂的特点,发展了一种新的网格划分方法,采用结构化的六面体网格,提高计算精度的同时又可节省计算量。应用Fluent软件对螺旋内肋管内的湍流流动和换热进行了三维数值模拟,数值模拟结果与Jensen等人的实验数据吻合良好。在其他参数相同的条件下对矩形、三角形、半圆形三种顶端外形轮廓的肋片性能进行了数值分析比较。  相似文献   

10.
利用实验和数值模拟方法考察了含水原油在内肋套管内的流动与传热性能,指出了在 Re=200~1200 时管子结构尺寸(肋片高度、肋片宽度和肋片长度)对传热性能的影响,并进行了实验验证.  相似文献   

11.
振荡流热管是一种新型高效传热元件,本文采用数值模拟的方法研究了振荡流热管换热器内的流动与换热情况,并结合场协同理论分析了换热器内管子排列方式、热风进口温度和进口流量对振荡流热管换热器换热情况的影响。模拟结果显示,换热器内管子叉排排列方式的换热效果优于顺排方式,热风进口流量对换热器内温差场均匀性影响较大,而热风进口温度对温差场均匀性影响较小。这些结果对振荡流热管换热器的设计具有一定的指导意义。  相似文献   

12.
锯齿形通道内流动与换热的数值分析   总被引:2,自引:2,他引:0  
本文采用非稳态数学模型对锯齿形通道的周期性充分发展流动与换热进行了数值模拟。计算结果显示,在所考虑的参数条件下,Re≥100时温度场和流场随时间不断变化,同时Nu数也随时间发生周期性振荡,并且随着Re的增大这种变化越明显;Re≥250时通道内开始产生旋涡,换热不断增强。计算得到的平均Nusselt数与现有文献中相近问题的试验关联式基本吻合。  相似文献   

13.
通过三维层流数值模拟,与平片计算结果对比,设计了适用于低流速和Re数(迎面风速1-3 m/s,对应Re数 901-2702)下的空调蒸发器用管翅式换热器的开缝翅片形式。研究表明:在上述迎面风速和Re数范围内,开缝翅片性能曲线和平片性能曲线不可避免地有一个交叉点,对应Re数称为转折Re数,在交叉点前的速度和Re数范围内,平片换热器的综合性能优于开缝翅片,而在高于转折Re数后,随着迎面风速的增大,开缝翅片的综合换热性能将越来越优于平片;依据“前疏后密”原则适当减少开缝翅片换热器开缝的条数,可以有效降低转折Re数,并显著改善低流速和Re数下换热器的综合性能。另外,再次验证了场协同理论-温度场和速度场的协同性与换热器换热量间的必然联系。  相似文献   

14.
太阳池非对流层最佳厚度及最大效率数值模拟   总被引:3,自引:0,他引:3  
本文对现有的太阳池辐射透射模型及稳态热效率模型进行了改进,改进的模型既考虑了池水浊度的影响又考虑了池内多重反射的影响,更接近实际情况。在改进的稳态热效率模型基础上,通过数值模拟的方法,对太阳池非对流层最佳厚度及其最大效率的相关影响因素作了较为详细的分析和讨论。认为太阳池非对流层最佳厚度及其最大效率取决于太阳池尺寸和结构、太阳辐射强度、储热层和上对流层的温差、太阳辐射在水中的透射率、池底反射率、水浊度、池水的物理特性以及池深度等综合因素,其中,△T/I0(储热层和上对流层的温差与水面太阳辐射强度的比值)是影响太阳池非对流层最佳厚度的主要因素,这为太阳池高效运行提供了理论指导。  相似文献   

15.
水力机械转轮内的CFD分析及优化设计   总被引:24,自引:0,他引:24  
本文基于Navier-Stokes方程和标准的k-ε紊流模型,模拟了转轮内的三维紊流场。同时,建立了一种现代水力机械转轮的设计方法;采用CAD-CFD系统,依据三维紊流场的预测结 果优化转轮内相关的几何参数,使得转轮内的流态接近理想流态,从而保证优化转轮的良好性能。  相似文献   

16.
平直开缝翅片传热特性的三维数值模拟及场协同原理分析   总被引:16,自引:1,他引:15  
本文用数值模拟的方法对翅片管换热器中广泛使用的平直开缝翅片的传热特性进行了数值模拟。结果表明在平翅片后部开缝与在翅片前部开缝相比,换热增强更多,并用场协同理论分析说明,在速度场和温度场协同比较差的区域开缝要比在场协同比较好的区域开缝对传热强化更有效。  相似文献   

17.
湿工况下平直翅片对流传热传质数值研究   总被引:3,自引:0,他引:3  
建立了湿空气流经平直翅片通道并伴有凝结现象发生的三维对流传热传质的数值模型,在空气进口雷诺数Re为190~3770,进口相对湿度φ_(in)为50%~90%的范围内,对干湿两种工况,平直翅片通道内的换热流动进行了对比研究。结果表明:湿工况换热系数为干工况换热系数的2.8~3.1倍,干工况翅片效率比湿工况翅片效率高35.8%~41.9%。当翅片为部分湿工况时,翅片效率随进口相对湿度的增大而增大,换热系数随进口相对湿度的增大而减小;当翅片为全湿工况后,进口相对湿度对翅片效率和换热系数的影响微弱。  相似文献   

18.
正反问题数值解法相结合三维叶片的优化设计   总被引:5,自引:0,他引:5  
本文讨论了叶轮机械中三维叶片的优化方法,并利用二维正反问题程序和三维N-S正问题程序作为工具,将二维叶型的改型与三维叶片的周向弯曲两种优化设计技术相结合,对工程应用中—实际叶片进行了改型优化。数值分析表明,取得了较好的优化效果。  相似文献   

19.
1引言制冷设备中换热器是重要的部件,在进行换热器设计或对实际系统中换热性能进行计算时,采用的翅片效率的准确与否将会关系到整个系统的工作状况。对于换热器表面处于干或湿工况时,文献中的翅片效率公式形式较统一,但对结霜情况下的研究相对没有一致的结论[1]。Sanders[1]、Barrow[2]和Kondepudi[3]都曾提及霜工况下换热器翅片效率公式,此外还有包含析湿系数的翅片效率形式。由于所采用的结霜翅片效率表达式不同,最终得到的翅片效率及翅片温度分布也难免存在差别。因而,从众多公式中选择相对准…  相似文献   

20.
椭圆形和圆形翅片管流动与传热的数值研究   总被引:1,自引:0,他引:1  
对椭圆管椭圆翅片间的流动与传热规律进行了三维数值研究,分析了不同翅片间距、迎面风速对表面换热系数和流动阻力的影响;与具有相同结构参数(相同的基管当量直径和翅片厚度、表面积)的圆管圆翅片进行比较表明,在相同条件下,两者的表面换热系数相差不大,但椭圆管椭圆翅片间流动阻力却有明显的减小.场协同分析表明,翅片迎风侧的换热要优于背风侧;通过适当增加迎风侧翅片面积,减小背风侧翅片面积,可以在强化换热的同时,减小流动阻力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号