首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects the COVID-19 pandemic in the world. The spike protein of the various proteins encoded in SARS-CoV-2 binds to human ACE2, fuses, and enters human cells in the respiratory system. Spike protein, however, is highly variable, and many variants were identified continuously. In this study, Korean mutants for spike protein (D614G and D614A-C terminal domain, L455F and F456L-RBD, and Q787H-S2 domain) were investigated in patients. Because RBD in spike protein is related to direct interaction with ACE2, almost all researches were focused on the RBD region or ACE2-free whole domain region. The 3D structure for spike protein complexed with ACE2 was recently released. The stability analysis through RBD distance among each spike protein chain and the binding free energy calculation between spike protein and ACE2 were performed using MD simulation depending on mutant types in 1-, 2-, and 3-open-complex forms. D614G mutant of CT2 domain, showing to be the most prevalent in the global pandemic, showed higher stability in all open-complex forms than the wild type and other mutants. We hope this study will provide an insight into the importance of conformational fluctuation in the whole domain, although RBD is involved in the direct interaction with ACE2.  相似文献   

2.
The angiotensin-converting enzyme 2 (ACE2) is the receptor used by SARS-CoV and SARS-CoV-2 coronaviruses to attach to cells via the receptor-binding domain (RBD) of their viral spike protein. Since the start of the COVID-19 pandemic, several structures of protein complexes involving ACE2 and RBD as well as monoclonal antibodies and nanobodies have become available. We have leveraged the structural data to design peptides to target the interaction between the RBD of SARS-CoV-2 and ACE2 and SARS-CoV and ACE2, as contrasting exemplar, as well as the dimerization surface of ACE2 monomers. The peptides were modelled using our original method: PiPreD that uses native elements of the interaction between the targeted protein and cognate partner(s) that are subsequently included in the designed peptides. These peptides recapitulate stretches of residues present in the native interface plus novel and highly diverse conformations surrogating key interactions at the interface. To facilitate the access to this information we have created a freely available and dedicated web-based repository, PepI-Covid19 database, providing convenient access to this wealth of information to the scientific community with the view of maximizing its potential impact in the development of novel therapeutic and diagnostic agents.  相似文献   

3.
Coronavirus Disease 2019 (COVID-19) remains a global health crisis, despite the development and success of vaccines in certain countries. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, uses its spike protein to bind to the human cell surface receptor angiotensin-converting enzyme 2 (ACE2), which allows the virus to enter the human body. Using our unique cell screening technology, we identified two ACE2-binding peptoid compounds and developed dimeric derivatives (ACE2P1D1 and ACE2P2D1) that effectively blocked spike protein-ACE2 interaction, resulting in the inhibition of SARS-CoV-2 pseudovirus entry into human cells. ACE2P1D1 and ACE2P2D1 also blocked infection by a D614G mutant pseudovirus. More importantly, these compounds do not decrease ACE2 expression nor its enzyme activity (which is important in normal blood pressure regulation), suggesting safe applicability in humans  相似文献   

4.
SARS-CoV-2 uses the human cell surface protein angiotensin converting enzyme 2 (ACE2) as the receptor by which it gains access into lung and other tissue. Early in the pandemic, there was speculation that a number of commonly used medications—including ibuprofen and other non-steroidal anti-inflammatory drugs (NSAIDs)—have the potential to upregulate ACE2, thereby possibly facilitating viral entry and increasing the severity of COVID-19. We investigated the influence of the NSAIDS with a range of cyclooxygenase (COX)1 and COX2 selectivity (ibuprofen, flurbiprofen, etoricoxib) and paracetamol on the level of ACE2 mRNA/protein expression and activity as well as their influence on SARS-CoV-2 infection levels in a Caco-2 cell model. We also analysed the ACE2 mRNA/protein levels and activity in lung, heart and aorta in ibuprofen treated mice. The drugs had no effect on ACE2 mRNA/protein expression and activity in the Caco-2 cell model. There was no up-regulation of ACE2 mRNA/protein expression and activity in lung, heart and aorta tissue in ibuprofen-treated mice in comparison to untreated mice. Viral load was significantly reduced by both flurbiprofen and ibuprofen at high concentrations. Ibuprofen, flurbiprofen, etoricoxib and paracetamol demonstrated no effects on ACE2 expression or activity in vitro or in vivo. Higher concentrations of ibuprofen and flurbiprofen reduced SARS-CoV-2 replication in vitro.  相似文献   

5.
The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite the development of vaccines, the emergence of SARS-CoV-2 variants and the absence of effective therapeutics demand the continual investigation of COVID-19. Natural products containing active ingredients may be good therapeutic candidates. Here, we investigated the effectiveness of geraniin, the main ingredient in medical plants Elaeocarpus sylvestris var. ellipticus and Nephelium lappaceum, for treating COVID-19. The SARS-CoV-2 spike protein binds to the human angiotensin-converting enzyme 2 (hACE2) receptor to initiate virus entry into cells; viral entry may be an important target of COVID-19 therapeutics. Geraniin was found to effectively block the binding between the SARS-CoV-2 spike protein and hACE2 receptor in competitive enzyme-linked immunosorbent assay, suggesting that geraniin might inhibit the entry of SARS-CoV-2 into human epithelial cells. Geraniin also demonstrated a high affinity to both proteins despite a relatively lower equilibrium dissociation constant (KD) for the spike protein (0.63 μM) than hACE2 receptor (1.12 μM), according to biolayer interferometry-based analysis. In silico analysis indicated geraniin’s interaction with the residues functionally important in the binding between the two proteins. Thus, geraniin is a promising therapeutic agent for COVID-19 by blocking SARS-CoV-2’s entry into human cells.  相似文献   

6.
The SARS-CoV-2 pandemic is the biggest health concern today, but until now there is no treatment. One possible drug target is the receptor binding domain (RBD) of the coronavirus’ spike protein, which recognizes the human angiotensin-converting enzyme 2 (hACE2). Our in silico study discusses crucial structural and thermodynamic aspects of the interactions involving RBDs from the SARS-CoV and SARS-CoV-2 with the hACE2. Molecular docking and molecular dynamics simulations explain why the chemical affinity of the new SARS-CoV-2 for hACE2 is much higher than in the case of SARS-CoV, revealing an intricate pattern of hydrogen bonds and hydrophobic interactions and estimating a free energy of binding, which is consistently much more negative in the case of SARS-CoV-2. This work presents a chemical reason for the difficulty in treating the SARS-CoV-2 virus with drugs targeting its spike protein and helps to explain its infectiousness.  相似文献   

7.
SARS-CoV-2 primarily infects epithelial airway cells that express the host entry receptor angiotensin-converting enzyme 2 (ACE2), which binds to the S1 spike protein on the surface of the virus. To delineate the impact of S1 spike protein interaction with the ACE2 receptor, we incubated the S1 spike protein with human pulmonary arterial endothelial cells (HPAEC). HPAEC treatment with the S1 spike protein caused disruption of endothelial barrier function, increased levels of numerous inflammatory molecules (VCAM-1, ICAM-1, IL-1β, CCL5, CXCL10), elevated mitochondrial reactive oxygen species (ROS), and a mild rise in glycolytic reserve capacity. Because low oxygen tension (hypoxia) is associated with severe cases of COVID-19, we also evaluated treatment with hemoglobin (HbA) as a potential countermeasure in hypoxic and normal oxygen environments in analyses with the S1 spike protein. We found hypoxia downregulated the expression of the ACE2 receptor and increased the critical oxygen homeostatic signaling protein, hypoxia-inducible factor (HIF-1α); however, treatment of the cells with HbA yielded no apparent change in the levels of ACE2 or HIF-1α. Use of quantitative proteomics revealed that S1 spike protein-treated cells have few differentially regulated proteins in hypoxic conditions, consistent with the finding that ACE2 serves as the host viral receptor and is reduced in hypoxia. However, in normoxic conditions, we found perturbed abundance of proteins in signaling pathways related to lysosomes, extracellular matrix receptor interaction, focal adhesion, and pyrimidine metabolism. We conclude that the spike protein alone without the rest of the viral components is sufficient to elicit cell signaling in HPAEC, and that treatment with HbA failed to reverse the vast majority of these spike protein-induced changes.  相似文献   

8.
Infection and replication of SARS CoV-2 (the virus that causes COVID-19) requires entry to the interior of host cells. In humans, a protein–protein interaction (PPI) between the SARS CoV-2 receptor-binding domain (RBD) and the extracellular peptidase domain of ACE2 on the surface of cells in the lower respiratory tract is an initial step in the entry pathway. Inhibition of the SARS CoV-2 RBD/ACE2 PPI is currently being evaluated as a target for therapeutic and/or prophylactic intervention. However, relatively little is known about the molecular underpinnings of this complex. Employing multiple computational platforms, we predicted “hot-spot” residues in a positive-control PPI (PMI/MDM2) and the CoV-2 RBD/ACE2 complex. Computational alanine scanning mutagenesis was performed to predict changes in Gibbs’ free energy that are associated with mutating residues at the positive control (PMI/MDM2) or SARS RBD/ACE2 binding interface to alanine. Additionally, we used the Adaptive Poisson-Boltzmann Solver to calculate macromolecular electrostatic surfaces at the interface of the positive-control PPI and SARS CoV-2/ACE2 PPI. Finally, a comparative analysis of hot-spot residues for SARS-CoV and SARS-CoV-2, in complex with ACE2, is provided. Collectively, this study illuminates predicted hot-spot residues, and clusters, at the SARS CoV-2 RBD/ACE2 binding interface, potentially guiding the development of reagents capable of disrupting this complex and halting COVID-19.  相似文献   

9.
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents significant social, economic and political challenges worldwide. SARS-CoV-2 has caused over 3.5 million deaths since late 2019. Mutations in the spike (S) glycoprotein are of particular concern because it harbours the domain which recognises the angiotensin-converting enzyme 2 (ACE2) receptor and is the target for neutralising antibodies. Mutations in the S protein may induce alterations in the surface spike structures, changing the conformational B-cell epitopes and leading to a potential reduction in vaccine efficacy. Here, we summarise how the more important variants of SARS-CoV-2, which include cluster 5, lineages B.1.1.7 (Alpha variant), B.1.351 (Beta), P.1 (B.1.1.28/Gamma), B.1.427/B.1.429 (Epsilon), B.1.526 (Iota) and B.1.617.2 (Delta) confer mutations in their respective spike proteins which enhance viral fitness by improving binding affinity to the ACE2 receptor and lead to an increase in infectivity and transmission. We further discuss how these spike protein mutations provide resistance against immune responses, either acquired naturally or induced by vaccination. This information will be valuable in guiding the development of vaccines and other therapeutics for protection against the ongoing coronavirus disease 2019 (COVID-19) pandemic.  相似文献   

10.
Since 2020, the receptor-binding domain (RBD) of the spike protein of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been constantly mutating, producing most of the notable missense mutations in the context of “variants of concern”, probably in response to the vaccine-driven alteration of immune profiles of the human population. The Delta variant, in particular, has become the most prevalent variant of the epidemic, and it is spreading in countries with the highest vaccination rates, causing the world to face the risk of a new wave of the contagion. Understanding the physical mechanism responsible for the mutation-induced changes in the RBD’s binding affinity, its transmissibility, and its capacity to escape vaccine-induced immunity is the “urgent challenge” in the development of preventive measures, vaccines, and therapeutic antibodies against the coronavirus disease 2019 (COVID-19) pandemic. In this study, entropy–enthalpy compensation and the Gibbs free energy change were used to analyze the impact of the RBD mutations on the binding affinity of SARS-CoV-2 variants with the receptor angiotensin converting enzyme 2 (ACE2) and existing antibodies. Through the analysis, we found that the existing mutations have already covered almost all possible detrimental mutations that could result in an increase of transmissibility, and that a possible mutation in amino-acid position 498 of the RBD can potentially enhance its binding affinity. A new calculation method for the binding energies of protein–protein complexes is proposed based on the entropy–enthalpy compensation rule. All known structures of RBD–antibody complexes and the RBD–ACE2 complex comply with the entropy–enthalpy compensation rule in providing the driving force behind the spontaneous protein–protein docking. The variant-induced risk of breakthrough infections in vaccinated people is attributed to the L452R mutation’s reduction of the binding affinity of many antibodies. Mutations reversing the hydrophobic or hydrophilic performance of residues in the spike RBD potentially cause breakthrough infections of coronaviruses due to the changes in geometric complementarity in the entropy–enthalpy compensations between antibodies and the virus at the binding sites.  相似文献   

11.
Emerging evidence suggests that males are more susceptible to severe infection by the SARS-CoV-2 virus than females. A variety of mechanisms may underlie the observed gender-related disparities including differences in sex hormones. However, the precise mechanisms by which female sex hormones may provide protection against SARS-CoV-2 infectivity remains unknown. Here we report new insights into the molecular basis of the interactions between the SARS-CoV-2 spike (S) protein and the human ACE2 receptor. We further report that glycosylation of the ACE2 receptor enhances SARS-CoV-2 infectivity. Importantly, estrogens can disrupt glycan–glycan interactions and glycan–protein interactions between the human ACE2 and the SARS-CoV-2 thereby blocking its entry into cells. In a mouse model of COVID-19, estrogens reduced ACE2 glycosylation and thereby alveolar uptake of the SARS-CoV-2 spike protein. These results shed light on a putative mechanism whereby female sex hormones may provide protection from developing severe infection and could inform the development of future therapies against COVID-19.  相似文献   

12.
Proinflammatory cytokine production following infection with severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) is associated with poor clinical outcomes. Like SARS CoV-1, SARS CoV-2 enters host cells via its spike protein, which attaches to angiotensin-converting enzyme 2 (ACE2). As SARS CoV-1 spike protein is reported to induce cytokine production, we hypothesized that this pathway could be a shared mechanism underlying pathogenic immune responses. We herein compared the capabilities of Middle East Respiratory Syndrome (MERS), SARS CoV-1 and SARS CoV-2 spike proteins to induce cytokine expression in human peripheral blood mononuclear cells (PBMC). We observed that only specific commercial lots of SARS CoV-2 induce cytokine production. Surprisingly, recombinant SARS CoV-2 spike proteins from different vendors and batches exhibited different patterns of cytokine induction, and these activities were not inhibited by blockade of spike protein-ACE2 binding using either soluble ACE2 or neutralizing anti-S1 antibody. Moreover, commercial spike protein reagents contained varying levels of lipopolysaccharide (LPS), which correlated directly with their abilities to induce cytokine production. The LPS inhibitor, polymyxin B, blocked this cytokine induction activity. In addition, SARS CoV-2 spike protein avidly bound soluble LPS in vitro, rendering it a cytokine inducer. These results not only suggest caution in monitoring the purity of SARS CoV-2 spike protein reagents, but they indicate the possibility that interactions of SARS CoV-2 spike protein with LPS from commensal bacteria in virally infected mucosal tissues could promote pathogenic inflammatory cytokine production.  相似文献   

13.
The overall impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on our society is unprecedented. The identification of small natural ligands that could prevent the entry and/or replication of the coronavirus remains a pertinent approach to fight the coronavirus disease (COVID-19) pandemic. Previously, we showed that the phenolic compounds corilagin and 1,3,6-tri-O-galloyl-β-D-glucose (TGG) inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 target receptor on the cell membrane of the host organism. Building on these promising results, we now assess the effects of these phenolic ligands on two other crucial targets involved in SARS-CoV-2 cell entry and replication, respectively: transmembrane protease serine 2 (TMPRSS2) and 3-chymotrypsin like protease (3CLpro) inhibitors. Since corilagin, TGG, and tannic acid (TA) share many physicochemical and structural properties, we investigate the binding of TA to these targets. In this work, a combination of experimental methods (biochemical inhibition assays, surface plasmon resonance, and quartz crystal microbalance with dissipation monitoring) confirms the potential role of TA in the prevention of SARS-CoV-2 infectivity through the inhibition of extracellular RBD/ACE2 interactions and TMPRSS2 and 3CLpro activity. Moreover, molecular docking prediction followed by dynamic simulation and molecular mechanics Poisson–Boltzmann surface area (MMPBSA) free energy calculation also shows that TA binds to RBD, TMPRSS2, and 3CLpro with higher affinities than TGG and corilagin. Overall, these results suggest that naturally occurring TA is a promising candidate to prevent and inhibit the infectivity of SARS-CoV-2.  相似文献   

14.
Pulmonary fibrosis is a chronic, fibrotic lung disease affecting 3 million people worldwide. The ACE2/Ang-(1–7)/MasR axis is of interest in pulmonary fibrosis due to evidence of its anti-fibrotic action. Current scientific evidence supports that inhibition of ACE2 causes enhanced fibrosis. ACE2 is also the primary receptor that facilitates the entry of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic. COVID-19 is associated with a myriad of symptoms ranging from asymptomatic to severe pneumonia and acute respiratory distress syndrome (ARDS) leading to respiratory failure, mechanical ventilation, and often death. One of the potential complications in people who recover from COVID-19 is pulmonary fibrosis. Cigarette smoking is a risk factor for fibrotic lung diseases, including the idiopathic form of this disease (idiopathic pulmonary fibrosis), which has a prevalence of 41% to 83%. Cigarette smoke increases the expression of pulmonary ACE2 and is thought to alter susceptibility to COVID-19. Cannabis is another popular combustible product that shares some similarities with cigarette smoke, however, cannabis contains cannabinoids that may reduce inflammation and/or ACE2 levels. The role of cannabis smoke in the pathogenesis of pulmonary fibrosis remains unknown. This review aimed to characterize the ACE2-Ang-(1–7)-MasR Axis in the context of pulmonary fibrosis with an emphasis on risk factors, including the SARS-CoV-2 virus and exposure to environmental toxicants. In the context of the pandemic, there is a dire need for an understanding of pulmonary fibrotic events. More research is needed to understand the interplay between ACE2, pulmonary fibrosis, and susceptibility to coronavirus infection.  相似文献   

15.
Coronavirus disease 2019 (COVID-19) has spread out as a pandemic threat affecting over 2 million people. The infectious process initiates via binding of SARS-CoV-2 Spike (S) glycoprotein to host angiotensin-converting enzyme 2 (ACE2). The interaction is mediated by the receptor-binding domain (RBD) of S glycoprotein, promoting host receptor recognition and binding to ACE2 peptidase domain (PD), thus representing a promising target for therapeutic intervention. Herein, we present a computational study aimed at identifying small molecules potentially able to target RBD. Although targeting PPI remains a challenge in drug discovery, our investigation highlights that interaction between SARS-CoV-2 RBD and ACE2 PD might be prone to small molecule modulation, due to the hydrophilic nature of the bi-molecular recognition process and the presence of druggable hot spots. The fundamental objective is to identify, and provide to the international scientific community, hit molecules potentially suitable to enter the drug discovery process, preclinical validation and development.  相似文献   

16.
Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric determinants of the SARS-CoV-2 spike protein binding with nanobodies, we also examined nanobody-induced modulation of escaping mutations and the effect of the Omicron variant on nanobody binding. The mutational scanning analysis supported the notion that E484A mutation can have a significant detrimental effect on nanobody binding and result in Omicron-induced escape from nanobody neutralization. Our findings showed that SARS-CoV-2 spike protein might exploit the plasticity of specific allosteric hotspots to generate escape mutants that alter response to binding without compromising activity. The network analysis supported these findings showing that VHH E/VHH V nanobody binding can induce long-range couplings between the cryptic binding epitope and ACE2-binding site through a broader ensemble of communication paths that is less dependent on specific mediating centers and therefore may be less sensitive to mutational perturbations of functional residues. The results suggest that binding affinity and long-range communications of the SARS-CoV-2 complexes with nanobodies can be determined by structurally stable regulatory centers and conformationally adaptable hotspots that are allosterically coupled and collectively control resilience to mutational escape.  相似文献   

17.
18.
SARS-CoV-2 exploits angiotensin-converting enzyme 2 (ACE2) as a receptor to invade cells. It has been reported that the UK and South African strains may have higher transmission capabilities, eventually in part due to amino acid substitutions on the SARS-CoV-2 Spike protein. The pathogenicity seems modified but is still under investigation. Here we used the experimental structure of the Spike RBD domain co-crystallized with part of the ACE2 receptor, several in silico methods and numerous experimental data reported recently to analyze the possible impacts of three amino acid replacements (Spike K417N, E484K, N501Y) with regard to ACE2 binding. We found that the N501Y replacement in this region of the interface (present in both the UK and South African strains) should be favorable for the interaction with ACE2, while the K417N and E484K substitutions (South African strain) would seem neutral or even unfavorable. It is unclear if the N501Y substitution in the South African strain could counterbalance the K417N and E484K Spike replacements with regard to ACE2 binding. Our finding suggests that the UK strain should have higher affinity toward ACE2 and therefore likely increased transmissibility and possibly pathogenicity. If indeed the South African strain has a high transmission level, this could be due to the N501Y replacement and/or to substitutions in regions located outside the direct Spike–ACE2 interface but not so much to the K417N and E484K replacements. Yet, it should be noted that amino acid changes at Spike position 484 can lead to viral escape from neutralizing antibodies. Further, these amino acid substitutions do not seem to induce major structural changes in this region of the Spike protein. This structure–function study allows us to rationalize some observations made for the UK strain but raises questions for the South African strain.  相似文献   

19.
The evolution of new SARS-CoV-2 variants around the globe has made the COVID-19 pandemic more worrisome, further pressuring the health care system and immunity. Novel variations that are unique to the receptor-binding motif (RBM) of the receptor-binding domain (RBD) spike glycoprotein, i. e. L452R-E484Q, may play a different role in the B.1.617 (also known as G/452R.V3) variant's pathogenicity and better survival compared to the wild type. Therefore, a thorough analysis is needed to understand the impact of these mutations on binding with host receptor (RBD) and to guide new therapeutics development. In this study, we used structural and biomolecular simulation techniques to explore the impact of specific mutations (L452R-E484Q) in the B.1.617 variant on the binding of RBD to the host receptor ACE2. Our analysis revealed that the B.1.617 variant possesses different dynamic behaviours by altering dynamic-stability, residual flexibility and structural compactness. Moreover, the new variant had altered the bonding network and structural-dynamics properties significantly. MM/GBSA technique was used, which further established the binding differences between the wild type and B.1.617 variant. In conclusion, this study provides a strong impetus to develop novel drugs against the new SARS-CoV-2 variants.  相似文献   

20.
The highly glycosylated spike protein of SARS-CoV-2 is essential for infection and constitutes a prime target for antiviral agents and vaccines. The pineapple-derived jacalin-related lectin AcmJRL is present in the medication bromelain in significant quantities and has previously been described to bind mannosides. Here, we performed a large ligand screening of AcmJRL by glycan array analysis, quantified the interaction with carbohydrates and validated high-mannose glycans as preferred ligands. Because the SARS-CoV-2 spike protein was previously reported to carry a high proportion of high-mannose N-glycans, we tested the binding of AcmJRL to the recombinantly produced extraviral domain of spike protein. We could demonstrate that AcmJRL binds the spike protein with a low-micromolar KD in a carbohydrate-dependent fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号