首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Renewable sources of low voltage are an important resource in power generation systems. Many provide high output current at low voltage, as the photovoltaic modules and fuel cells systems, therefore, become more popular considering the safety requirements. In this paper, a novel current-fed three-phase dc-dc converter with high-frequency isolation transformer is proposed. This one has the main features as high dc voltage gain, reduced switches count, minimize the volume of the output/input filters, the frequency ripple of the input current and output voltage are three times higher than the switching frequency, best losses distribution and reduced stresses in the circuit. Moreover, it operates with wide-range duty cycle, the soft-start can be used, which allows the input current and the output voltage to be started gradually. Operating with a duty cycle of 1/3 and 2/3, the input current ripple is canceled. The proposed converter is studied qualitatively and quantitatively, being presented the operation principle in continuous and discontinuous conduction mode, dc voltage gain in each operation mode, and the voltage and current stresses for the power components sizing. To validate the operation of the proposed converter, the laboratory design example and experimental results are presented to demonstrate the performance and validate the claims of the converter for wide load variation. Experimental results are presented for a 4-kW prototype, operating in R2 region for continuous conduction mode. Additionally, experimental results in R1 and R3 regions are obtained.  相似文献   

2.
针对光伏、燃料电池等新能源发电系统所需的高升压比的应用场景,提出一种交错并联三绕组耦合电感高增益Boost变换器。以交错并联的控制方式减小了耦合电感原边电流纹波,切分了占空比从而减少了各开关管导通时长,交错并联的开关管与输出开关管在电路结构上实现了电压钳位,不会出现电压尖峰。桥式倍压单元缓解了二极管反向恢复问题。交错并联耦合电感双原边的构造提高了变换器的工作可靠性。另外,基于该变换器还拓展出交错并联n+1绕组耦合电感高增益Boost变换器和n耦合电感交错并联n桥式倍压高增益Boost变换器。围绕所提变换器的工作原理及稳态性能进行了深入分析。且在理论分析的基础上通过实验平台制作了一台功率为500 W的样机验证了其准确性。  相似文献   

3.
耦合电感式新型交错Boost软开关变换器研究   总被引:1,自引:0,他引:1  
提出一种新型的耦合电感式交错并联Boost软开关变换器的拓扑结构,并对相应控制方法及耦合电感耦合系数进行设计。该变换器利用耦合电感漏感与开关管输出电容之间的谐振,令开关管在占空比大于0.5时实现零电压开通,在占空比小于0.5时实现近似零电流开通,降低了开关损耗;而且没有添加额外器件,不会对变换器功率密度造成影响。详细给出了电路拓扑结构、工作原理及工作过程分析,对表征电路能量传递的有效占空比进行了讨论,对影响软开关效果的耦合电感耦合系数进行了分析与设计,最后在SIMetrix环境下进行仿真,并搭建了250 W原理样机,仿真与试验结果验证了理论分析的正确性。  相似文献   

4.
This paper presents an ultrahigh step-up converter with combination of a quadratic boost converter, a multiplier cell, and a three windings coupled inductor. Main advantages of the converter include its high voltage gain, low voltage stress on the switch and most of the diodes, continuity of input current with low ripple, and existence of a common ground between the source and load. Furthermore, requiring small inductors leads to high efficiency performance of the converter. To confirm superiority of the proposed converter, it has been compared with the converters consisting coupled inductors. Analysis of the converter has been performed for its main operation modes to validate its quality and quantity factors. A prototype is built in order to experiment its performance per different conditions and evaluate the analysis. Rated values per the experiments are 25, 500, and 200 W for the input voltage, output voltage, and output power, respectively.  相似文献   

5.
耦合电感是多路输出电源中的关键部件,但其工作机理却未得到足够认识。本文根据所引入的耦合电感的数学模型,分析了耦合电感匝比的设计,以及耦合电感对于输出电流脉动、负载交错性能、输出动态性能的影响。在深入分析的基础上,文中还提出新的调整输出纹波的方法(改变耦合电感的绕制方法来调整输出纹波)和改善输出负载交错性能的方法。仿真和实验结果验证了所提方法的有效性。  相似文献   

6.
因三相四桥臂变流器在不平衡系统应用中的优势,采用其作为微网变流器拓扑结构。为改善微网系统离网工况下带不平衡负载时的供电质量,提出了一种改进分序控制方法。采用基于广义二阶积分器的正负序分离方法提取负载电压的正负序分量,再将其变换至对应的旋转坐标系进行控制。在独立的零轴控制中,引入比例谐振调节器,增强零序电压的控制性能,简化控制算法。最后,对所提控制方法进行仿真与实验验证。结果表明,采用该控制方案的四桥臂变流器能够在负载不平衡的情况下维持输出电压的平衡,增强离网条件下的运行性能。  相似文献   

7.
In this paper, a new interleaved non‐isolated bidirectional dc–dc converter with capability of zero voltage switching and high voltage gain is proposed. In the proposed converter by using two coupled inductors and one capacitor, the voltage gain is extended. Moreover, by using only an auxiliary circuit that includes an inductor and two capacitors, the zero voltage switching (ZVS) of two used switches in the first phase of converter can be achieved. The ZVS operation of two used switches in the second phase is always obtained without using any extra auxiliary circuit. This converter similar to other interleaved converters has low input current ripple and low current stress on switches. In this paper, the proposed converter is analyzed in all operating modes, and also the voltage gain, required conditions for ZVS operation of switches, voltage and current stresses of all switches, and the value of input current ripple in both boost and buck operations are obtained. Finally, the accuracy performance of the proposed converter is verified through simulation results in EMTDC/PSCAD software. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
为了实现交直流混合微电网的可靠并网,基于微电网中AC/DC双向功率变换器下垂控制策略和预同步工作原理,提出一种适用于混合微电网中连接交直流子网的AC/DC双向功率变换器的控制策略。孤岛/并网模式时采用双向下垂控制实现双向功率流动。在由孤岛模式转为并网模式时,利用消除dq轴电压偏差实现幅值与相位同步,无需通过锁相环获取相位信息,实现平滑并网。同时,针对微电网中由于不平衡负载导致的三相不平衡工况,采用正负序分别控制的方法实现了非理想工况下微电网的同步互联。仿真结果验证了该方案的可行性。  相似文献   

9.
针对燃料电池发电系统输出电压低和输入电流纹波大的问题,本文设计了一种新型带耦合电感的双向DC-DC变换器。该变换器利用超级电容器减少电流纹波对燃料电池的冲击从而提高燃料电池的发电效率,同时通过改变占空比和耦合电感的匝数比来提高输出电压增益。在Matlab/Simulink软件中创建仿真模型,采用平均电流模式搭建控制电路,并详细地分析升压和降压模式下变换器的开关状态与工作特性。仿真结果为:变换器的输入电流纹波约为1%,在耦合电感变比为1时升压电压增益最高为16。结果表明本文所提变换器可以在满足燃料电池发电系统对低频电流纹波的要求同时实现高电压增益,验证了所提出拓扑的可行性。  相似文献   

10.
本文提出的"I王I"形耦合电感器通过增加磁路气隙的数量,使磁路的磁压分布更加均匀,与传统铁心电感器相比显著减小了磁路的电磁损耗、电磁干扰和线圈的涡流损耗,且增大了窗口面积。通过分析耦合电感器的磁通分布,建立磁路模型,给出了耦合电感器的设计方法,并对所提出的耦合电感器进行仿真,结合双向DC/DC变换器的实验验证了"I王I"形耦合电感器结构的可行性。  相似文献   

11.
针对弱电网时谐振频率发生变化导致LCL型并网变换器稳定裕度降低的问题,提出一种应用于直流微电网并网变换器的双电流反馈控制策略.根据变换器交直流两侧功率守恒以及传统下垂控制方程,建立直流母线电压与变换器侧电流的二次函数关系,简化直流母线电压控制方式,减少控制器参数设计;在变换器侧电流反馈控制内环加入并网电流反馈有源阻尼,...  相似文献   

12.
针对微电网储能应用中各储能装置以及直流母线存在的电压波动对变换器工作造成的不利影响、电路环流带来的损耗问题,在原边全桥-副边升压半桥隔离型双向DC/DC拓扑的基础上,提出了PWM配合双重移相的控制方法,分析了该方法在变换器端口电压波动情况下对变换器的各种工作特性带来的改善。针对单侧H桥双重移相控制仅在端口电压匹配时才能够在整个移相范围内消除功率环流的局限性,阐述了引入PWM控制后在消除功率环流上的改进,提高了端口电压在宽变化范围下系统的工作效率。建立了PWM配合双重移相控制变换器的数学模型,并与传统移相控制变换器特性做出定量的对比。设计了所提方法应用在微电网储能系统中的控制策略,并搭建了仿真模型,对控制效果进行了对比分析,验证了所提方法的有效性。  相似文献   

13.
This paper presents a single-switch, high step-up, non-isolated DC-DC converter for photovoltaic (PV) power application. The proposed converter is composed of a coupled inductor, a passive clamp circuit, a voltage multiplier cell, and a voltage lift circuit. The passive clamp circuit recovers the leakage inductance energy of the coupled inductor and limits the voltage spike on the switch. Configuration of the passive clamp and voltage multiplier circuits increases the converter voltage gain. High-voltage gain without a large duty cycle, low turn ratio of the coupled inductor, low-voltage stress on the switch and diodes, leakage inductance energy recovery, and high efficiency are the main merits of the suggested DC-DC converter. Steady-state operation of the converter in continuous conduction mode (CCM), discontinuous conduction mode (DCM), and boundary condition mode (BCM) is discussed and analyzed in detail. Then, design procedure of the proposed converter is given. The presented DC-DC converter is compared with similar topologies to verify its advantages. Moreover, theoretical efficiency of the presented converter is calculated in details. Finally, simulation and experimental measurement results of 388 V-220 W prototype of the proposed DC-DC converter at 50-kHz switching frequency are presented to verify its performance.  相似文献   

14.
四相并列式排布的非对称耦合电感因其结构特点,运行于磁耦合交错并联双向直流变换器的输出结果与对称耦合电感有所不同。通过分析四相非对称耦合电感应用于磁集成交错并联双向直流变换器的工作模态,研究了对称度、占空比以及耦合系数的变化对变换器稳态性能和暂态性能的影响,给出了四相非对称耦合电感的设计准则,即在对此类非对称耦合电感进行设计时,利用给出的设计公式确定参数的选择区域,进而进行相关参数的选取。最终,通过对此类结构的耦合电感进行设计与实验,验证了理论分析的正确性。  相似文献   

15.
In this paper, a non‐isolated high step‐up dc‐dc converter based on coupled inductor is proposed. The proposed converter can be used in renewable energy applications. In suggested converter, the high voltage is achieved using 3‐winding coupled inductor, which leads to low voltage rate of the switch. A clamp circuit is used to recycle the leakage inductance energy. Also, the clamp circuit prevents the creation of voltage spikes on semiconductor devices and causes the voltage stress of elements are limited to less than the output voltage. The presented theoretical analyses show that the operation of suggested converter in continuous conduction mode needs to small magnetic inductor. Therefore, the size of coupled inductor's core is reduced, and so the size and cost of presented converter will be decreased. Analysis of the proposed converter is provided with laboratory results to verify its performance.  相似文献   

16.
Bipolar hybrid ac/dc microgrid (MG) controls a DC and AC bus at the same time, supplies local loads with local resources, and offers multiple levels of dc voltages to resources and services. The applications are getting more popular in power systems. Due to its vital tasks in numerous applications, the interlinking converter (ILC) is an utmost crucial portion of the MG system. From this study, a 10-switch converter is provided as an ILC for a hybrid MG, which gains from both two-level (2L) and three-level (3L) converters at the same time, and it can be used to a wider range of power levels. This work provides a space vector modulation (SVM) for a 10-switch converter to maximize dc-link voltage consumption and minimize total harmonic distortion (THD) compared with other modulation techniques. The behaviour of the suggested SVM is compared with that of sinusoidal PWM. The suggested SVM was evaluated using OPAL-RT to show that it used DC bus voltage more reliably and produced significantly less THD than existing techniques. Furthermore, grid-tied ILC's architecture is improved to reduce low-order harmonics and used for dc-link voltage balancing. A real-time (RT) digital simulator (OP-5700) was used to test the inverter control technique. In MG, this hardware-in-the-loop simulation provides an excellent environment for designing and verifying system-level control algorithms. Simulations were run in a MATLAB/Simulink environment and confirmed using an RT simulator to validate the feasibility of the suggested topology.  相似文献   

17.
电力电子化的直流微电网自身缺乏惯性,当功率发生波动时,直流母线电压会产生较大突变,不利于其稳定运行。为了解决这一问题,虚拟直流电机控制被应用于直流变换器中来模拟直流电机的外特性,进而为直流微电网提供惯性支撑。但传统参数固定的虚拟直流电机控制在提供惯性的同时会牺牲系统的动态响应速度。针对这一问题,提出了参数自适应虚拟直流电机控制,并将它应用于储能端推挽式DC/DC变换器中。建立了系统的小信号模型,分析了转动惯量参数变化对系统的影响,并给出了参数的自适应调节原则。最后,搭建了仿真模型对不同控制方法进行了对比分析。仿真结果表明所提控制策略在为系统提供较大惯性支撑的同时,系统仍具有较快的动态响应速度。  相似文献   

18.
This paper presents a high step‐up soft switched dc–dc converter having the feature of current ripple cancelation in the input stage that is specialized for power conditioning of fuel cell systems. The converter comprises a special half‐bridge converter and a rectifier stage based upon the voltage‐doubler circuit, in which the coupled‐inductor technology is amalgamated with switched‐capacitor circuit. The input current with no ripple is the principal characteristics of this topology that is achieved by utilizing a small coupled inductor. In addition, the low clamped voltage stress across both power switches and output diodes is another advantage of the proposed converter, which allows employing the metal–oxide–semiconductor field‐effect transistors with minuscule on‐state resistance and diodes with lower forward voltage‐drop, and thereby, the semiconductors' conduction losses diminish considerably. The inherent nature of this topology handles the switching scheme based on the asymmetrical pulse width modulation in order for switches to establish the zero voltage switching, leading to lower switching losses. Besides, because of the absence of the reverse‐recovery phenomenon, all diodes turn off with zero current switching. At last, a 250‐W laboratory prototype with the input voltage 24 V and output voltage 380 V is implemented to verify the especial features of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, a pulse width modulation DC‐DC converter with high step‐up voltage gain is proposed. The proposed converter achieves high step‐up voltage gain with appropriate duty ratio, coupled inductor, and voltage multiplier technique. The energy stored in the leakage inductor of the coupled inductor can be recycled in the proposed converter. Moreover, because both main and auxiliary switches can be turned on with zero‐voltage switching, switching loss can be reduced by soft‐switching technique. So the overall conversion efficiency is improved significantly. The theoretical steady‐state analyses and the operating principles of the proposed converter are discussed in detail for both continuous conduction mode and discontinuous conduction mode. Finally, a laboratory prototype circuit of the proposed converter is implemented to verify the performance of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号