首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目前,公路城轨两用大跨度斜拉桥钢桁梁正交异性板上铺设无砟轨道缺少相关规范及工程实例,理论储备和应用经验也不足。通过分析公路城轨两用大跨度斜拉桥的结构特点,结合重庆轨道交通6号线两座大桥无砟轨道的设计情况,为减少运营后的养护维修、降低轨道结构的二期恒载,提出了一种可在公路城轨两用大跨度钢桁梁斜拉桥上铺设的轻型无砟轨道结构型式。通过在大梁缝处设置抬轨装置后,可有效避免线路刚度不均、钢轨支点距离过大的问题,使钢轨在梁缝处的各项位移减小,降低了钢轨在梁端的应力集中,保证轨道交通行车的安全性。  相似文献   

2.
以昌赣客运专线主跨300 m混合梁斜拉桥为研究对象,考虑结构层间非线性约束特征,建立桥塔、斜拉索、梁体、支座、墩台、剪力钉、底座板、限位凹槽弹性垫板、减振弹性垫层、道床板、扣件、钢轨等全要素大跨度斜拉桥-无砟轨道系统精细化有限元模型,研究附加荷载作用下结构附加力。基于Miner准则,探讨列车动载、无砟轨道设计参数以及时变温度作用下无砟轨道动力疲劳特性。结果表明:在斜拉桥端部设置钢轨伸缩调节器并采用小阻力扣件可满足钢轨强度要求,挠曲荷载下钢轨最大拉应力位于桥塔附近,制动荷载下钢轨最大拉应力位于主梁跨中;列车动载下轨道结构间相对位移最大值均不超过1.0 mm。主梁跨中道床板板底受拉,最大拉应力0.74 MPa,桥塔处底座板板底受拉,最大拉应力1.15 MPa;提高弹性垫层刚度可有效提高道床板疲劳寿命,增大扣件竖向刚度可增强钢轨与道床板间连接,提高钢轨寿命,列车时速增加会增大轨道结构动应力幅,降低疲劳寿命;时变温度作用下最大温度梯度发生在道床板,耦合列车动载后底座板结构受力更显著,但仍满足混凝土抗拉强度设计要求。  相似文献   

3.
官厅水库特大桥是京张高铁的重难点控制性工程之一,主桥采用多孔曲弦钢桁梁桥式跨越官厅水库,长度880 m,是目前国内最大规模高速铁路无砟轨道钢桥.以京张高铁官厅水库特大桥主桥为依托,开展无砟轨道钢桁梁桥温度效应研究,对现行规范中温度荷载取值存在的问题进行分析,提出桥面形式为正交异性钢桥面板+混凝土桥面板的无砟轨道钢桁梁桥...  相似文献   

4.
CRTSⅢ型板式无砟轨道施工精度要求高,铺设在柔性的大跨度斜拉桥上精度难以控制。为研究斜拉桥无砟轨道施工精度控制方法,以新建南昌至赣州高速铁路赣州赣江特大桥为工程背景,通过有限元模拟分析,研究大跨度斜拉桥无砟轨道施工时,CPⅢ网联测的环境控制要求,以及大跨度斜拉桥无砟轨道施工的线形控制方法。结果表明,选择气温稳定、无温度梯度影响且风力不超过3级的夜间环境进行CPⅢ网联测,可有效保证大跨度柔性斜拉桥CPⅢ控制网联测的精度;无砟轨道施工阶段,合理调整索力,并根据大桥实测变形值不断修正预拱度计算模型,用于指导无砟轨道精调施工,可保证大跨度斜拉桥CRTSⅢ型板式无砟轨道的施工质量与精度要求。  相似文献   

5.
为解决在市域铁路大跨度桥梁铺设无砟轨道的难题,以温州市域铁路 S3 线永宁大桥(140+200+260+140) m 为例,提出了市域铁路大跨度桥梁铺设无砟轨道竖向变形控制标准,建立了车-轨-桥耦合系统动力仿真模型, 并开展多种工况下桥梁、轨道动力响应分析。结果表明:桥梁挠跨比、竖向变形曲率半径、梁端转角、轨面平顺 性等指标均满足铺设无砟轨道技术要求;列车按设计速度通过永宁大桥时行车安全性和舒适性指标均满足要求; 对温度荷载作用下桥梁温度变形曲线进行评估,10 m 弦轨道高低不平顺满足规范要求。研究成果可为市域铁路大 跨度桥梁铺设无砟轨道提供参考。  相似文献   

6.
研究目的:在总结铁路钢桥轨道结构应用的基础上,根据高速铁路大跨度钢桁梁斜拉桥和轨道结构特点,研究提出轨道结构选型原则,并对比分析有砟轨道、合成树脂枕轨道、板式无砟轨道、双块式无砟轨道的适应性,提出轨道结构选型建议。研究结论:(1)大跨度钢桁梁斜拉桥轨道结构选型应从轨道结构特性、施工性、维修性、综合经济性及环境性等方面综合考虑;(2)有砟轨道结构较为成熟,但结构自重大,养护维修工作量大,从寿命周期成本考虑,综合性能不高;双块式无砟轨道结构简单,自重较轻,但施工顺序对轨道线形有较大影响,对施工工艺要求高;(3)板式无砟轨道自重较轻,对钢桁梁桥适应性良好,且有一定的应用经验;合成树脂枕轨道结构简单、自重轻,维修工作量少,对钢桥适应性强,建议在高速铁路大跨度钢桁梁斜拉桥上研究采用合成树脂轨枕轨道和板式无砟轨道;(4)本文对高速铁路大跨度钢桁梁斜拉桥轨道结构选型有一定参考意义。  相似文献   

7.
桥上无砟轨道竖向动力特性分析   总被引:1,自引:0,他引:1  
根据桥上CRTSⅡ型轨道结构形式,考虑高速列车与无砟轨道、桥梁之间的相互作用,建立基于新型车辆单元和无砟轨道-桥梁单元的车辆-无砟轨道-桥梁纵垂向耦合振动模型。运用有限元方法和Lagrange方程,分别推导车辆单元、无砟轨道-桥梁单元的刚度、质量和阻尼矩阵,建立有限元数值方程。考虑轨道平顺和轨道不平顺两种工况,求解有限元数值方程,分析梁端和跨中动力特性。计算结果表明,该模型及程序能够反映轨道结构的竖向振动响应。施加轨道不平顺,轮轨作用力增大了50%左右,梁端处钢轨的竖向加速度增加了6.5倍左右,跨中处从10 m/s~2增加到30 m/s~2。每种工况下,梁端和跨中处轨道结构的竖向位移、竖向加速度分别逐渐减小,梁端处轨道结构的振动及其位移变化都比跨中处大。  相似文献   

8.
郑州万滩黄河公铁大桥主桥(112+6×168+112) m连续钢桁梁的结构复杂,跨度大,温度敏感性高,为了保证无砟轨道线形满足设计及规范要求,在无砟轨道施工前对连续钢桁梁进行施工线形控制试验,测量其施工挠度。采用MIDAS/Civil软件建立有限元模型得到理论挠度。对比挠度的实测值和理论计算值,从而修正有限元模型中连续钢桁梁的理论刚度,制定无砟轨道施工线形控制措施。结果表明,连续钢桁梁挠度的理论计算值是实测值的1.35倍,应将理论刚度增大到原设计值的1.35倍。为了能够较为准确地预测出无砟轨道的施工挠度,应不断修正有限元模型中连续钢桁梁的理论刚度。  相似文献   

9.
轨道动刚度是不同激振频率的荷载作用下,轨道抵抗变形的能力,由于有砟轨道与无砟轨道两种轨道的组成差异造成两者间存在较大动刚度差异。随着行车速度的提高、中高频段激振荷载的增加,有砟轨道与无砟轨道间的动刚度差异逐渐增大,这对于行车平顺性与结构耐久性会造成较大影响,但目前缺乏轨道动刚度的相关研究。为研究有砟轨道与无砟轨道间的动刚度差异,根据两种轨道的结构特点,建立相应的ANSYS有限元模型,通过对比分析,得出两种轨道的轨道动刚度在中低频段存在较大差异,轨下动刚度在全频段存在较大差异。为保证有砟-无砟轨道过渡段的行车平稳性与结构耐久性,需要考虑两种轨道间的动刚度过渡设计。此外,轨道动刚度特性分析可以指导高速铁路高低不平顺控制,从而保证行车平顺性。  相似文献   

10.
以某高速铁路客运专线上铺设CRTSⅠ型双块式无砟轨道的大跨度斜拉桥为例,采用非线性阻力模型模拟扣件阻力、凸型挡台咬合力、隔离层摩擦阻力,基于有限元法建立无砟轨道—桥梁空间精细化非线性分析模型。通过计算列车竖向荷载和温度荷载作用下轨道结构和桥面板的竖向变形曲率、无砟轨道层间压缩量和梁端转角,分析无砟轨道与大跨度斜拉桥间的变形适应性。结果表明:列车竖向荷载在斜拉桥中跨时会引起各构件产生较大的竖向变形曲率;同一工况下轨道结构和桥面板竖向变形曲率的分布规律相同、数值大小相近;相比于列车竖向荷载,温度荷载作用下各结构竖向变形曲率较小,但分布更为复杂;除整体升温、整体降温作用下结合段无砟轨道出现局部层间脱空外,荷载作用下无砟轨道层间基本处于受压状态;梁端转角均未超过规范限值,具有较高安全富余度。  相似文献   

11.
望虞河大桥是通苏嘉甬高速铁路的关键控制工程之一,主桥为(60+105+340+105+60)m斜拉桥,采用无砟轨道,半漂浮体系.现有300 m级无砟轨道高速铁路斜拉桥主要有钢箱结合梁、钢箱混合结合梁、钢箱桁梁三种方案,望虞河大桥主梁拟采用钢箱混合结合梁方案,首先论述其总体设计方案,研究得到其合理拉索间距及钢混结合段位置...  相似文献   

12.
张捍东 《铁道建筑》2020,(3):104-107,117
以昌赣客运专线(35+40+60+300+60+40+35)m混合梁斜拉桥为例,建立了大跨度斜拉桥上无砟轨道精细化模型计算分析不同荷载作用下大跨度桥上无砟轨道纵向力。计算结果表明:在温度荷载作用下,钢轨纵向应力相对较大,最大拉应力为130.03 MPa,跨中轨道板纵向应力较小。在竖向荷载作用下,钢轨、轨道板和底座板的拉应力最大值出现在桥塔附近,压应力最大值出现在跨中附近,其中钢轨压应力最大值为15.02 MPa,底座板拉应力最大值为3.05 MPa。在列车制动作用下,钢轨、轨道板和底座板的拉应力最大值出现在跨中附近,压应力最大值出现在桥塔附近,轨道板和底座板纵向应力均较小。  相似文献   

13.
无砟轨道连续梁(刚构)桥的后期变形问题是困扰铁路桥梁工程师的技术难题。采用桥梁博士和Midas两种不同结构计算分析软件模拟桥梁施工过程,并就不同施工措施和工艺差异对其变形的影响进行了详细的对比分析。计算结果表明,由于混凝土徐变机理非常复杂且影响因素众多,不同结构分析软件的计算结果存在1~2 cm的后期变形差异也属正常。混凝土超方及有效预应力值对后期变形的影响不容忽视,施工过程中应严格控制予以避免。影响大跨度连续刚构桥后期变形的因素较多且复杂,应特别注意避免后期变形的同向叠加。施工前通过详细和准确的计算分析,施工过程中加强对变形的监测和控制,则大跨度连续刚构桥的后期变形是可控的。  相似文献   

14.
大跨度铁路钢桁梁斜拉桥刚度设计及取值研究   总被引:1,自引:0,他引:1  
研究目的:通过统计国内外已建成并安全运营的大跨度铁路钢桁梁斜拉桥刚度参数,参考国内外现有规范,结合铁路斜拉桥的刚度特点,分析大跨度铁路钢桁梁斜拉桥的刚度指标。在此基础上,通过车桥耦合振动的分析方法,分析大跨度铁路钢桁梁斜拉桥高跨比、宽跨比对车辆与桥梁的动力响应影响,提出大跨度铁路钢桁梁斜拉桥的刚度取值范围。研究结论:(1)结合已建成的大跨度铁路钢桁梁斜拉桥及现有规范,考虑荷载差异,大跨度铁路钢桁梁斜拉桥竖向刚度可适当偏低,大跨度铁路钢桁梁斜拉桥竖向挠跨比设计值可取为1/500~1/800;(2)设计风速时横向挠跨比可放宽到1/1 000~1/2 000,可行车风速下横向挠跨比限值按规范取为1/4 000;(3)桁架高跨比可取为1/25~1/40,桁架宽跨比可取为1/25~1/35;(4)本文研究成果对今后大跨度铁路斜拉桥初步设计工作具有一定的指导意义。  相似文献   

15.
高速铁路大跨度钢桁梁桥通常铺设有砟轨道,以避免温度应力下钢梁形变对轨道平顺性的影响。京张高铁官厅水库特大桥为8孔跨度为110 m的钢桁梁桥,其上铺设无砟轨道,对轨道精调提出了新的要求。采用钢梁固定端CPⅢ点自由设站、现场实测梁中CPⅢ点三维坐标的方法来进行控制网复测,采用轨道惯性测量系统进行轨道快速测量,并对其作业模式、测量流程、精度控制、数据处理、平顺性及模拟调整量分析等进行研究。此外,还详细介绍了轨道精调的作业过程,对轨道相对测量、抗拔扣件处理、轨道几何状态的静态质量评价、动检TQI质量指数应用等进行了分析。轨道精调结果表明:该段钢桁梁桥无砟轨道相对测量TQI小于2,设计速度下动检车检测无二级分,达到了较好的效果。  相似文献   

16.
左一舟 《铁道勘察》2022,(6):134-138
跨东平水道特大桥主桥为斜拉钢混组合结构,且城轨、公路与人行道同层布设,为大坡道人字坡布局,是目前国内外罕见的公铁两用特殊桥梁。在该类型桥上铺设无砟轨道存在较大的困难:桥上无缝线路附加力计算及设计较为复杂;无砟轨道结构不仅需要考虑自身的受力情况,还需考虑桥梁的振动影响;桥梁大梁缝处的梁端轨道结构需做适应性研究。为指导跨东平水道桥主桥无砟轨道结构设计,基于有限元软件分别建立桥上无缝线路梁轨相互作用模型、桥上无砟轨道结构模及梁端轨道结构适应性分析模型,并对是否设置伸缩钢轨调节器,铺设CA砂浆层或聚氨酯垫层、是否设置梁端伸缩装置进行了对比分析。结果表明,小阻力扣件布设间距应较短(即设置10 m小阻力扣件),对抑制大坡道上轨条纵向窜动和防止断轨时断缝值变大起到较好效果;在列车荷载及正、负温度梯度荷载作用下,根据现有设计方案,道床板及凸台强度满足承载要求;相较于CA砂浆层,聚氨酯垫层更能有效地阻隔振动的传播,达到了预期设计效果;使用伸缩装置结构能够优化约8 mm的梁端错台并优化轨道系统。  相似文献   

17.
研究目的:目前大跨度桥上铺设无砟轨道的技术尚不成熟,缺乏实践经验。本文结合西安至延安高铁王家河特大桥的特点,通过刚体动力学方法及有限元方法建立车桥耦合振动模型,分析不同桥梁预拱度和轨道不平顺共同作用下列车过桥时的安全性及平稳性,并参照相应规范给出安全舒适性评价;根据车桥耦合振动模型的仿真结果,利用频谱分析方法,研究不同时速下高低不平顺波长与车体垂向加速度的关联关系,给出列车不同时速的长波不平顺管理建议值。研究结论:(1)跨中预拱值设为(230±20) mm且预拱曲线按照余弦曲线分配时,列车安全性与舒适性能够满足200~350 km/h的通过速度需求;(2)针对长波不平顺管理值,200 km/h时建议大于70 m,250 km/h时建议大于85 m,300 km/h时建议大于100 m,350 km/h时建议大于115 m;(3)本研究结论对大跨度铁路桥梁变形控制和轨道平顺度标准的研究具有参考价值。  相似文献   

18.
结合国内各类大跨度桥梁无砟轨道施工经验,简述国内高速铁路建设中大跨度桥梁无砟轨道变形控制、测量方法及线形控制技术,为今后同类大跨度桥梁的建设提供借鉴。  相似文献   

19.
新建广州南沙港铁路跨洪奇沥水道特大桥主桥采用(138+2×360+138)m钢桁梁柔性拱,为了降低钢桁梁用钢量,克服传统明桥面轨道结构几何形位不易保持、养修工作量大的缺点,在总结分析既有钢桁梁桥上轨道结构优缺点的基础上,结合大跨度钢桁梁结构特点,提出大跨度钢桁梁桥上铺设轨枕板式轨道结构的设计方案,并对轨道结构组成部分进...  相似文献   

20.
高速铁路大跨度斜拉桥应用无砟轨道可提高线路平顺性和稳定性,消除线路的潜在限速点,统一轨道类型,减少轨道线路运维成本,是我国高速铁路的重要技术创新。依托世界首座无砟轨道大跨度斜拉桥-昌吉赣客专赣州赣江特大桥,建立大跨度斜拉桥-无砟轨道体系精细化有限元分析模型,探明了大跨度斜拉桥-无砟轨道一体化体系的变形特征,设计并制作了大跨度斜拉桥上无砟轨道变形适应性的等效比例室内试验模型,开展了大跨度斜拉桥上无砟轨道变形适应性理论与试验研究,对比分析了大跨度桥上无砟轨道的不同长度、隔离层类型及布置方式的影响,研究了在各类变形条件下大跨度斜拉桥上无砟轨道的变形跟随性和协调性。研究结果表明:大跨度斜拉桥梁端转角和主梁整体挠曲变形仍可依据现行规范中的中小桥梁相关限值进行控制;应合理控制斜拉桥主梁节间的局部变形,避免桥上无砟轨道层间出现脱空离缝;提出了大跨度斜拉桥上单元式无砟轨道设置橡胶隔离层的技术方案,论证了橡胶隔离层的应用效果,建立了桥上无砟轨道橡胶隔离层的“缓冲作用”理念和轨道层间“隔而不离”的设计目标,显著提高了桥上无砟轨道的变形适应性;本文研究成果可为高速铁路大跨度斜拉桥上无砟轨道的推广应用提供技术...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号