首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A mixed convection flow of an Oldroyd-B fluid in the presence of thermal radiation is investigated. The flow is induced by an inclined stretching surface. The boundary layer equations of the Oldroyd-B fluid in the presence of heat transfer are used. Appropriate transformations reduce partial differential equations to ordinary differential equations. A computational analysis is performed for convergent series solutions. The values of the local Nusselt number are numerically analyzed. The effects of various parameters on velocity and temperature are discussed.  相似文献   

2.
白羽  万飒  张艳 《计算力学学报》2023,40(4):546-551
研究了非稳态分数阶Oldroyd-B流体在多孔介质中通过楔形拉伸板的驻点流动问题。基于分数阶Oldroyd-B流体的本构模型建立了动量方程,并在其中引入了浮升力和驻点流动特征。此外,考虑了具有热松弛延迟时间的修正的分数阶Fourier定律,并将其应用于能量方程和对流换热边界条件。接着,采用与L1算法相结合的有限差分法求解控制偏微分方程。最后,分析了相关物理参数对流动的影响。结果表明,随着楔角参数的增加,流体受到的浮升力增大,导致速度加快;达西数越大,介质的孔隙度变大,流体的流动越快;此外,温度分布先略有上升后明显下降,这表明Oldroyd-B流体具有热延迟特性。  相似文献   

3.
The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions. The project supported by the National Natural Science Foundation of China (10272067), the Doctoral Program Foundation of the Education Ministry of China (20030422046), the Natural Science Foundation of Shandong Province, China (Y2006A14) and the Research Foundation of Shandong University at Weihai. The English text was polished by Keren Wang.  相似文献   

4.
This investigation deals with the influence of slip condition on the magnetohydrodynamic (MHD) and rotating flow of a generalized Oldroyd-B (G.Oldroyd-B)fluid occupying a porous space.Fractional calcul...  相似文献   

5.
纤维悬浮液搅拌流动的数值模拟   总被引:2,自引:0,他引:2  
由于缺乏适当的本构方程,对纤维悬浮液流动的研究一直局限于纤维的牛顿流体悬浮液。本文采用MUCM模型对作者最近提出的纤维Oldroyd-B流体悬浮液的本构方程作了改进,并对锚式桨搅拌槽的二维Oldroyd-B流体和牛顿流体纤维悬浮液搅拌流动作了数值模拟。模拟的结果表明,本文所用的模型和方法能有效地抑制过大局部应力的影响并合理地处理流体的记忆效应。  相似文献   

6.
This paper looks at the magnetohydrodynamic (MHD) analysis for transient flow of an Oldroyd-B fluid in a porous medium. The presented analysis takes into account the modified Darcy's law. The flow is induced due to constantly accelerated and oscillating plate. Expressions for the corresponding velocity field and the adequate tangential stress are determined by means of the Fourier sine transform. The influence of various parameters of interest on the velocity and tangential stress has been shown and discussed. A comparison for different kinds of fluids is also provided.  相似文献   

7.
The present paper investigates the steady flow of an Oldroyd-B fluid. The fluid flow is induced by an exponentially stretched surface. Suitable transformations reduce a system of nonlinear partial differential equations to a system of ordinary differential equations. Convergence of series solution is discussed explicitly by a homotopy analysis method (HAM). Velocity, temperature and heat transfer rates are examined for different involved parameters through graphs. It is revealed that for a larger retardation time constant, the velocity is enhanced and the temperature is lowered. It is noted that relaxation time constant and the Prandtl number enhance the heat transfer rate.  相似文献   

8.
This paper reports an exact solution for the coaxial disk flow of an Oldroyd-B fluid. The flow is approximately generated by the parallel-plate viscometer. Asymptotic and numerical solutions are reported showing that there is a critical Weissenberg number based on the angular velocity and the Maxwellian relaxation time, above which the flow is unstable. A linearized stability analysis for the basic inertialess flow confirms this numerical instability and yields the critical Weissenberg number.  相似文献   

9.
Some exact solutions of the time-dependent partial differential equations are discussed for flows of an Oldroyd-B fluid. The fluid is electrically conducting and incompressible. The flows are generated by the impulsive motion of a boundary or by application of a constant pressure gradient. The method of Laplace transform is applied to obtain exact solutions. It is observed from the analysis that the governing differential equation for steady flow in an Oldroyd-B fluid is identical to that of the viscous fluid. Several results of interest are obtained as special cases of the presented analysis.  相似文献   

10.
This paper generalizes the analysis of four magnetohydrodynamic (MHD) flow problems of an Oldroyd-B fluid discussed by Asghar et al. [Int. J. Non-linear Mech. 40, 589–601 (2005)] into three directions: (i) to discuss the problems in a porous medium using modified Darcy’s law (ii) to see the influence of Hall current (iii) to determine the effect of rheological parameter of Burgers’ fluid. Analytical solutions of velocity distribution valid at large and small times are given in each problem. Comparison has been provided for Oldroyd-B and Burgers’ fluids through graphs. The physical interpretation is also included.  相似文献   

11.
M. Kamran  M. Imran  M. Athar 《Meccanica》2013,48(5):1215-1226
In this research article, the unsteady rotational flow of an Oldroyd-B fluid with fractional derivative model through an infinite circular cylinder is studied by means of the finite Hankel and Laplace transforms. The motion is produced by the cylinder, that after time t=0+, begins to rotate about its axis with an angular velocity Ωt p . The solutions that have been obtained, presented under series form in terms of the generalized G-functions, satisfy all imposed initial and boundary conditions. The corresponding solutions that have been obtained can be easily particularized to give the similar solutions for Maxwell and Second grade fluids with fractional derivatives and for ordinary fluids (Oldroyd-B, Maxwell, Second grade and Newtonian fluids) performing the same motion, are obtained as limiting cases of general solutions. The most important things regarding this paper to mention are that (1) we extracted the expressions for the velocity field and the shear stress corresponding to the motion of Second grade fluid with fractional derivatives as a limiting case of our general solutions corresponding to the Oldroyd-B fluid with fractional derivatives, this is not previously done in the literature to the best of our knowledge, and (2) the expressions for the velocity field and the shear stress are in the most simplified form, and the point worth mentioning is that these expressions are free from convolution product and the integral of the product of the generalized G-functions. Finally, the influence of the pertinent parameters on the fluid motion, as well as a comparison between models, is shown by graphical illustrations.  相似文献   

12.
The velocity field and the associated tangential tension corresponding to the flow of an Oldroyd-B fluid over a suddenly moved flat plate are determined. The well-known solutions for a Navier–Stokes fluid, as well as those corresponding to a Maxwell fluid and a second-grade one, appear as limiting cases of our solutions. Finally, some comparative diagrams concerning the velocity and tension profiles are presented for different values of the material constants.  相似文献   

13.
The influence of matrix and droplet viscoelasticity on the steady deformation and orientation of a single droplet subjected to simple shear is investigated microscopically. Experimental data are obtained in the velocity–vorticity and velocity–velocity gradient plane. A constant viscosity Boger fluid is used, as well as a shear-thinning viscoelastic fluid. These materials are described by means of an Oldroyd-B, Giesekus, Ellis, or multi-mode Giesekus constitutive equation. The drop-to-matrix viscosity ratio is 1.5. The numerical simulations in 3D are performed with a volume-of-fluid algorithm and focus on capillary numbers 0.15 and 0.35. In the case of a viscoelastic matrix, viscoelastic stress fields, computed at varying Deborah numbers, show maxima slightly above the drop tip at the back and below the tip at the front. At both capillary numbers, the simulations with the Oldroyd-B constitutive equation predict the experimentally observed phenomena that matrix viscoelasticity significantly suppresses droplet deformation and promotes droplet orientation. These two effects saturate experimentally at high Deborah numbers. Experimentally, the high Deborah numbers are achieved by decreasing the droplet radius with other parameters unchanged. At the higher capillary and Deborah numbers, the use of the Giesekus model with a small amount of shear-thinning dampens the stationary state deformation slightly and increases the angle of orientation. Droplet viscoelasticity on the other hand hardly affects the steady droplet deformation and orientation, both experimentally and numerically, even at moderate to high capillary and Deborah numbers.  相似文献   

14.
A similarity solution is constructed for the flow of an Oldroyd-B fluid around a 270° re-entrant comer. The velocity is found to vanish like r5/9 and the stress to be singular like r−2/3. A simple expression is found for the streamfunction.  相似文献   

15.
The upstream/downstream streamline shift and the associated negative wake generation (streamwise velocity overshoot in the wake) in a viscoelastic flow past a cylinder are studied in this paper, for the Oldroyd-B, UCM, PTT, and FENE-CR fluids, using the Discrete Elastic Viscous Split Stress Vorticity (DEVSS-ω) scheme (Dou HS, Phan-Thien N (1999). The flow of an Oldroyd-B fluid past a cylinder in a channel: adaptive viscosity vorticity (DAVSS-ω) formulation. J Non-Newtonian Fluid Mech 87:47–73). The numerical algorithm is a parallelized unstructured Finite Volume Method (FVM), running under a distributed computing environment through the Parallel Virtual Machine (PVM) library. It is demonstrated that both the normal stress and its gradient are responsible for the negative wake generation and streamline shifting. Fluid extensional rheology plays an important role in the generation of the negative wake. The negative wake can occur in flows where the fluid extensional viscosity does not increase rapidly with strain rate. The formation of the negative wake does not depend on whether the streamlines undergo an upstream or a downstream shift. Shear-thinning viscosity weakens the velocity overshoot and while shear-thinning first normal stress coefficient enhances the velocity overshoot. Wall proximity is not necessary for the velocity overshoot; however, it enhances the strength of the negative wake. For the Oldroyd-B fluid, the ratio of the solvent viscosity to the zero-shear viscosity plays an important role in the streamline shift. In addition, mesh dependent behaviour of normal stresses along the centreline at high De in most cylinder/sphere simulations is due to the convection of normal stress from the cylinder to the wake, which results in the maximum of the normal stress being located off the centreline by a short distance at high De.  相似文献   

16.
In this article, analysis is presented to study the effect of Hall current on the rotating flow of a non-Newtonian fluid in a porous medium taking into consideration the modified Darcy's law. The Oldroyd-B fluid model is used to characterize the non-Newtonian fluid behavior. The governing equations for unsteady rotating flow have been modeled in a porous medium. The analysis includes the flows induced by general periodic oscillations and elliptic harmonic oscillations of a plate. The effect of the various emerging parameters is discussed on the velocity distribution. The analytical results are confirmed mathematically by giving comparison with previous studies in the literature. It is observed that the velocity distribution increases with an increase of Hall parameter. The behavior of permeability is similar to that of the Hall parameter.  相似文献   

17.
A highly parallel time integration method is presented for calculating viscoelastic flows with the DEVSS-G/DG finite element discretization. The method is a synthesis of an operator splitting time integration method that decouples the calculation of the polymeric stress by solution of a hyperbolic constitutive equation from the evolution of the velocity and pressure fields by solution of a generalized Stokes problem. Both steps are performed in parallel. The discontinuous finite element discretization of the hyperbolic constitutive equation leads to highly-parallel element-by-element calculation of the stress at each time step. The Stokes-like problem is solved by using the BiCGStab Krylov iterative method implemented with the block complement and additive levels method (BCALM) preconditioner. The solution method is demonstrated for the calculation of two-dimensional (2D) flow of an Oldroyd-B fluid around an isolated cylinder confined between two parallel plates. These calculations use extremely fine finite elements and expose new features of the solution structure.  相似文献   

18.
The flow past a cylinder in a channel with the aspect ratio of 2:1 for the upper convected Maxwell (UCM) fluid and the Oldroyd-B fluid with the viscosity ratio of 0.59 is studied by using the Galerkin/Least-square finite element method and a p-adaptive refinement algorithm. A posteriori error estimation indicates that the stress-gradient error dominates the total error. As the Deborah number, De, approaches 0.8 for the UCM fluid and 0.9 for the Oldroyd-B fluid, strong stress boundary layers near the rear stagnation point are forming, which are characterized by jumps of the stress-profiles on the cylinder wall and plane of symmetry, huge stress gradients and rapid decay of the gradients across narrow thicknesses. The origin of the huge stress-gradients can be traced to the purely elongational flow behind the rear stagnation point, where the position at which the elongation rate is of 1/2De approaches the rear stagnation point as the Deborah number approaches the critical values. These observations imply that the cylinder problem for the UCM and Oldroyd-B fluids may have physical limiting Deborah numbers of 0.8 and 0.9, respectively.The project supported by the National Natural Science Foundation of China (50335010 and 20274041) and the MOLDFLOW Comp. Australia.  相似文献   

19.
The isothermal, planar Poiseuille flow of a weakly compressible Oldroyd-B fluid is considered under the assumption that the density of the fluid obeys a linear equation of state. A perturbation analysis for all the primary flow variables is carried out with the isothermal compressibility serving as the perturbation parameter. The sequence of partial differential equations which results from the perturbation procedure is solved analytically up to second order. The effects of the compressibility parameter, the aspect ratio, and the Weissenberg number are discussed. In particular, it is demonstrated that compressibility has a significant effect on the transverse velocity and the first normal stress difference.  相似文献   

20.
A nanofluid is composed of a base fluid component and nanoparticles, in which the nanoparticles are dispersed in the base fluid. The addition of nanoparticles into a base fluid can remarkably improve the thermal conductivity of the nanofluid, and such an increment of thermal conductivity can play an important role in improving the heat transfer rate of the base fluid. Further, the dynamics of non-Newtonian fluids along with nanoparticles is quite interesting with numerous industrial applications. The present predominately predictive modeling studies the flow of the viscoelastic Oldroyd-B fluid over a rotating disk in the presence of nanoparticles. A progressive amendment in the heat and concentration equations is made by exploiting the Cattaneo-Christov heat and mass flux expressions. The characteristic of the Lorentz force due to the magnetic field applied normal to the disk is studied. The Buongiorno model together with the Cattaneo-Christov theory is implemented in the Oldroyd-B nanofluid flow to investigate the heat and mass transport mechanism. This theory predicts the characteristics of the fluid thermal and solutal relaxation time on the boundary layer flow. The von K′arm′an similarity functions are utilized to convert the partial differential equations(PDEs) into ordinary differential equations(ODEs). A homotopic approach for obtaining the analytical solutions to the governing nonlinear problem is carried out. The graphical results are obtained for the velocity field, temperature, and concentration distributions. Comparisons are made for a limiting case between the numerical and analytical solutions, and the results are found in good agreement. The results reveal that the thermal and solutal relaxation time parameters diminish the temperature and concentration distributions, respectively. The axial flow decreases in the downward direction for higher values of the retardation time parameter. The impact of the thermophoresis parameter boosts the temperature distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号