首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The earthquakes in Kaliningrad, West Russia on the 21st of September 2004 were unexpected in a seismically quiet area. The main shock of magnitude mb = 5 was widely felt around the Baltic Sea. A comparison with some historic earthquakes in Northern Europe shows that its perceptibility area is smaller than that of the 1904 Oslo Graben earthquake of an estimated magnitude (ML) 5.4 but larger than those of the 1759 Kattegat and 1819 Lurøy earthquakes. The latter are claimed to have had magnitudes (MS) in the range of 5.7-6.0. An analysis of the Lg phase of the Kaliningrad earthquakes as recorded at a number of European stations accords only weakly with the macroseismic intensity pattern that shows fast attenuation towards west-northwest and southeast. The strike-slip focal mechanism of the main shock is discussed in the context of remnant glacial rebound stresses in generating present-day seismicity in N. Europe.  相似文献   

2.
Seismotectonic position of the Kaliningrad September 21, 2004, earthquake   总被引:1,自引:1,他引:0  
The paper presents an alternative consistent seismotectonic model of the Kaliningrad (Russia) September 21, 2004, earthquake according to which source zones of the two strongest shocks were confined to a N-S fault off the Sambiiskii Peninsula in the Kaliningrad region. A left-lateral deformation fractured a local crustal zone between the town of Yantarnyi and the settlement of Bakalino. The model was constructed with the use of a method developed by the authors for structural analysis of gravity and magnetic data. Initial materials are revised in terms of the EMS-98 macroseismic scale, and modified maps showing the shaking intensity in the NW part of the Sambiiskii Peninsula are compiled.  相似文献   

3.
An analysis of source parameters of the two unexpected earthquakes from the Kaliningrad (Russia) area is presented. The earthquakes occurred on 21 September 2004 at 11:05:01 and 13:32:31 UT, respectively. The first event was located at the latitude φ = 54.924°N and the longitude λ = 20.120°E, with a depth h = 16 km, and the second event at φ = 54.876°N, λ = 20.120°E and h = 20 km. Magnitudes Mw of the two events were very similar: 5.1 and 5.2. The magnitude values reported by various international data centers have been meaningfully different. The reason is the presence of high-frequency components in Z velocity component of the S wavefield. They were observed along the direction defined by two stations, BLEU in Sweden and SUW in Poland, located in opposite sides of the source. Along the direction perpendicular to it, the effects are relatively very small. The high-frequency waves are understood to mean components in the 6–8 Hz band for event 1 and 2-4 Hz for event 2. The effects in question are also clearly visible on displacement spectrograms. The magnitude values calculated at such stations from S-wave amplitudes or from seismic spectra are clearly overestimated and are close to 6. Therefore, we made a careful selection of channels in order to determine the spectral parameters and, on this basis, the source parameters. The size of the source is relatively small, of about 2 km. The closest seismic station is at 100 source radii from the source. One can clearly see the effect of the TT zone which markedly reduces the seismic moment value for seismic stations laying on the opposite sides of the source. Both events have very similar spatial distributions of the source parameters: magnitude, seismic moment and radius.  相似文献   

4.
Factual data on surface disturbances that emerged in the proximal zone of the Kaliningrad earthquake on September 21, 2004 (M = 4.9, I 0 = 6.5) on land and in the adjacent basin are presented. These observations are nearly the first of this kind within the eastern European platform. It is shown that, on land, all disturbances were provoked by the shocks; however, they developed partially or completely as delayed consequences and had a superficial character, being conditioned by extremely unfavorable peculiarities of the local soil and relief. Such disturbances are not provided for in the MSK-64 and INQUA macroseismic scales during shocks with I = 6, which presents a number of problems for further studies and the adjustment of scales in the middle gradation zone.  相似文献   

5.
The paper analyzes data of leveling and meteorological observations conducted in the Kaliningrad region in the second half of September 2004, i.e., during a period including the few moderate seismic shocks of September 21, 2004. The analysis of long observation series and comparison of sea level variations recorded from September 15 through 30, 2004, with meteorological data have led to the conclusion that, most probably, the Sambiiskii Peninsula subsided tectonically by 25–30 cm over 12–24 h and a new sequence of seismic shocks occurred five to eight hours after the beginning of the subsidence. The geodynamic and prognostic aspects of the results obtained in this work are discussed.  相似文献   

6.
The seismic situation in the SE Baltic region that existed during the period 1990–2006, including the unexpectedly strong Kaliningrad earthquakes of 2004, is analyzed. The spatiotemporal variation of seismic events in the region is examined on the basis of a newly compiled catalog of tectonic earthquakes. The analysis revealed outbursts of seismic activity in 1995 and 2004, structurization of the distribution of shocks, and their southward migration. The distribution of hot springs that arose in 2002–2004 is analyzed in relation to seismological data. The seismic process and thermal anomalies are shown to be geodynamically controlled, which provided constraints on the nucleation process and focal mechanism of the Kaliningrad earthquakes. The region, located in the western East European platform, should be regarded as seismically rather active.  相似文献   

7.
GPS observations of the European permanent network were used to identify seismo-ionospheric precursors of Baltic Sea earthquake of 21 September 2004. It is a very rare event for this region of Europe (magnitude of about 5.0). This value is the threshold for the occurrence of seismic effects in the ionosphere. In total electron content (TEC) data over the region of the earthquake, a specific ionospheric anomaly appeared one day before the earthquake was detected. The ionospheric variability had a positive sign with an enhancement of about 4–5 TECU (1 TECU = 1016 electrons/m2) relative to the non-disturbed state of the ionosphere. The anomaly had a duration of 4–5 hours in the day time. The special size of this anomaly was about 1000 km. The characteristic parameters of the anomaly show that it can be associated with ionospheric precursors of an earthquake.  相似文献   

8.
The Harvard CMT catalogue contains 481 shallow earthquakes that occurred between 1 January 1977 and 30 November 2005 within a broad region defined by the geographical latitude from 3°S to 14°N and by the longitude from 91°E to 102°E. There are 230 events that occurred before the great earthquake of 26 December 2004. Their surface distribution is not uniform and the source area of the 2004 great event appears as an area of seismic quiescence with a radius of about 100 km. There are 186 events that occurred between the two great earthquakes of 26 December 2004 and 28 March 2005. Practically all of them are located to the northwest from the great earthquake of 2005, that in turn was followed by 63 events, mostly located to the southeast. The cumulative seismic moment from earthquakes before the occurrence of the great event of 2004 increased rather regularly with time, with sudden increase about twenty years and two years before the occurrence of the great event. The seismic moment of earthquakes between the two great events increased rapidly during the first ten-fifteen days, then flattened out and increased slowly with time. After the great event of 2005 the seismic moment shows quiet increase during some 115 days, then sudden jump, followed by very small activity till the end of our observations. From the spatial distribution of seismic moment of earthquakes that occurred before the great event of 2004 it follows that its largest release appeared to the southeast from the great event, around the rupture area of the great earthquake of 2005. The largest release of seismic moment from earthquakes between the two great events is observed in the vicinity of the 2004 event and further up to the north. The seismic moment from earthquakes that occurred after the great event of 2005 was mostly released in its vicinity and further down to the south.  相似文献   

9.
10.
11.
On September 3rd (22:07 UTC), 1997 a small earthquake with Mw=4.54 started the foreshocks sequence (1500 events with ML <3.1) of the September 26th seismic sequence. Two days after, three seismic stations of the University of Camerino were installed around the macroseismic epicenter of the foreshock. We present in this paper the location of foreshocks (with 2.1L<3.3) which occurred between September 3rd and 26th. Foreshocks location, with horizontal (ERH) and vertical (ERZ) error less than 1.5 km, define an area 4 km large. Foreshocks have been localized between the epicenters of the two major events of September 26th, which occurred at 00:33 UTC with Mw=5.6 and at 09:40 UTC with Mw=6.0 (Amato et al., 1998; Ekström et al., 1998). In a vertical cross-section, hypocenters show a low angle (30°) structure with SW dip-direction. Focal mechanisms for three of the major events show dip-slip fault solutions with strike direction of about N130, in agreement with the CMT solutions of September 3rd and September 26th earthquakes (Ekström et al., 1998). Data recorded at two stations Popola (POP) e Capodacqua (CPQ) located on the rupture area of the September 26th faults, allowed us to calculate a mean Vp/Vs ratio of 1.84±0.03 for the foreshock. This value is lower than the Vp/Vs ratio of 1.89±0.02 calculated for the aftershock sequence occurred in the same area. Besides, the Vp/Vs ratio during the foreshocks sequence is not stable in time but it seems to increase approaching September 26th. After September 26th mainshocks, this value tends to stabilize around a higher value of 1.89. Following the dilatancy model, we suggest that the relative low Vp/Vs ratio before the main shocks could indicate the presence of fluid in the focal volume. The presence of fluids could have increased the effective stress on the fault plane and could be responsible for the long foreshock activity before the two main earthquakes of September 26th. Therefore, we suggest that this foreshock activity could have also contributed to reduce the friction along the September 26th fault plane, breaking the active structure in two smaller segments. In this hypothesis, foreshock activity could have drastically contributed to mitigate the seismic potential of the Colfiorito's active structure.  相似文献   

12.
13.
1999年在四川省德阳市绵竹县发生了两次5.0级地震.其中1999年11月30日绵竹汉旺5.0级地震前,德阳市地震局对该次地震的时问、地区、震级三要素做出了准确的短临预报.该项预报在人口稠密经济发达的四川德阳地区成功实现,取得了良好的社会和经济效益,得到了中国地震局,德阳市人民政府的充分肯定,并予以表彰和奖励.  相似文献   

14.
15.
2003年6月17日和7月10日,先后在四川省西昌市和西昌-昭觉间发生2次ML4 8级强有感地震.对于这2次地震,我们曾作了较好的中期和短期预测.但是对于6月17日发生的第一次ML4 8级地震,未能做出临震预测;对于第二次地震,则在7月1日向上级填报的周会商表中作了明确的临震预测,7月10日,在西昌-昭觉间发生了ML4.8级地震.根据西昌地震遥测台网各子台的P波初动求解震源机制,结合地震所处的地质构造以及现场烈度考察圈定出的结果分析,认为这二次地震是由安宁河断裂带、则木河断裂、凉山断裂所围成的凉山小菱形块体活动的结果.  相似文献   

16.
The directivity function method is combined with an earthquake sequence study to obtain the reliable estimates of rupture area and rupture velocity of two right-lateral strike-slip earthquakes occurring along the San Andreas fault zone in central California. By utilizing a significant difference in velocity structure on both sides of the main fault, a modified version of the directivity function is formulated and applied to near-field SH waves. On assuming aftershock areas following their step-wise increase with time as rupture areas, an extensive systematic search for the best fit between the observed and theoretical directivity functions is made for a combination of both source parameters. The rupture at the February 24, 1972 earthquake (ML = 5.0) propagated unilaterally with an average velocity of about 2.3 km/sec. It produced a rectangular area, the horizontal and vertical lengths being about 5 and 2 km, respectively. The rupture at the September 4, 1972 earthquake (ML = 4.6) was of bilateral, yielding a nearly square rupture area of which side length is about 2 km. The rupture velocity of this earthquake, though some ambiguities resulting from a lower quality of the observed directivity function, is estimated at 1.9 km/sec or less. A difference in average rupture velocity between both earthquakes might imply its dependence on the ambient tectonic environment such as represented by local stress and humidity. By taking into account a post-earthquake creep increase of about 3.0–3.5 cm observed at a creepmeter station situated over the focus of the February 24, 1972 earthquake, its stress drop and seismic moment are estimated at about 10 bar and 1023 dyn · cm, respectively. The above procedure has a broad applicability for recovering reliable estimates of source parameters, especially when it is combined with a synthetic approach.  相似文献   

17.
Spatial and temporal distribution of seismicityoccurring prior to the Umbria-Marche earthquake ofSeptember 26, 1997, are studied. By applying the RTLprognostic parameter, a quiescence stage followed bya period of foreshock activation is observed beforethe event. The main shock occurred soon after therecovery of the RTL parameter to its normal backgroundlevel. An investigation of the clustering process isperformed on the earthquakes with M 3.5,occurred since 1989 in the area of the epicenter ofthe September 26, 1997 event. In comparison to theaverage background of the previous period, theincrease of the area of rupture activated during thetwelve months leading up to the Umbria-Marcheconcentrates in the vicinity of the main shock. Someresults of application of the time-to-failure model toseismicity before the Umbria-Marche main shock, arealso discussed.  相似文献   

18.
2004年9月17日阳江4.9级地震概述   总被引:1,自引:1,他引:1  
2004年9月17日广东阳江发生了4.9级地震,从地震序列、震中位置及等震线分布判断本次4.9级地震仍属1969年阳江6.4级地震"老"震区的晚期地震活动,与该区已发生的4~5级地震序列活动类似,具有前期余震频度、强度衰减快的特点.宏观调查及震源机制证实平冈断裂是此次4.9级地震的主要控震和发震构造.震前曾出现了一定数量的前兆异常,但地震学异常不显著,震前中小地震活动未出现异常活跃或异常平静.  相似文献   

19.
A first tentative comparison between the structural framework related to the active tectonics and the long-term seismicity of the Umbria–Marche Apennines (affected by the 1997 seismic sequence) has provided some insight for discussing the seismotectonic characteristics of the area. This Apennine sector is affected by 15 to 20-km-long active fault systems, consisting of minor fault-segments. Each of these fault-segments may be responsible for earthquakes characterised by magnitudes ranging between 5.5 and 6.0 (such as those occurred in 1599, 1730, 1838, 1859, 1979). However, the occurrence of one large-magnitude event (1703, Ms = 6.7) and of seismic sequences (1747–1751; 1997–1998) indicate that an entire fault system may be activated suddenly (at least in the southern part of the investigated area) or during seismic crises which may last many months. The comparison between the active faulting framework and the long-term seismicity also indicates that no significant earthquakes may be related to the Mt. Vettore Fault System since 1000 AD.  相似文献   

20.
四川长宁地区地处四川盆地与娄山褶皱带结合部位,受加里东、海西、印支、燕山及喜马拉雅等多期构造运动的叠加影响,其地表构造呈一系列平缓、低陡的背斜与向斜相间样式排列.此类断褶构造格局为油气及盐矿储存创造了良好条件,长宁地区盐矿赋存丰富,其中双河盐矿长期注水采卤(阮祥等,2008).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号