首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
CO2催化加氢被认为是生产高附加值化学品和燃料最实用的途径之一。然而由于其化学惰性、C–C键偶联过程的高能垒和诸多的竞争反应,因此,开发高效的催化剂以促进CO2的活化并转化为多样的化工产物显得至关重要。近年来,氧化铟因具有丰富的氧缺陷位点,在催化CO2加氢方面对甲醇的高选择性以及对CO2转化的高活性引起了人们的广泛关注。本工作主要对In2O3的结构及其与氧化物负载或金属元素掺杂的复合催化剂用于催化CO2加氢制备甲醇的催化性能进行了综述。探讨了In2O3与不同类型的分子筛的接近度和元素迁移在CO2加氢制烃类产物中的影响。并对In2O3基催化剂在CO2选择性加氢方面存在的挑战和发展方向进行了总结。  相似文献   

2.
将CO2作为可利用的碳资源催化转化为高附加值化学品或液体燃料对于节能减排和碳资源的循环利用具有重要意义。由于CO2分子的化学惰性及高的C–C键耦合能垒,导致CO2的选择性活化及可控转化极具挑战。近年来,随着研究的不断深入及串联催化体系的构建,世界各国研究者在CO2催化加氢制备高附加值烃类方面取得了突破性的研究进展。然而,在串联催化过程中,Fe基催化剂或金属氧化物与分子筛间的协同匹配、活性组分间的组装方式、分子筛的孔道结构及酸性、以及反应条件及气氛均对CO2加氢的产物分布影响显著。有鉴于此,本综述针对CO2加氢制备高附加值烃(低碳烯烃、异构烷烃、汽油及芳烃)的串联催化反应体系,重点介绍串联催化剂上影响CO2活化、转化及目标产物生成的关键因素以及串联催化剂的稳定性,并在此基础上对CO2催化加氢的未来和前景进行总结和展望。  相似文献   

3.
化石燃料的利用为人类社会带来了前所未有的繁荣和发展. 然而, 化石燃料燃烧引起的过量的二氧化碳(CO2)排放导致全球气候变化和海洋酸化; 而且作为一种有限的资源, 化石燃料的消耗将迫使人们寻找其它碳源以维持可持续的发展. 利用可再生能源获取电能分解水制得的绿色氢气(H2)与捕集后的CO2反应制成甲醇, 不仅能有效利用工业废气中多余的CO2, 还能获取清洁、 可再生的甲醇化学品, 该过程的技术核心是开发高效稳定的CO2加氢制甲醇催化剂. 本文综合评述了现有研究关注较多的多相催化CO2加氢制甲醇催化剂的反应机理和构效关系, 总结了目前多相催化CO2加氢制甲醇催化剂(Cu基催化剂、 贵金属与双金属催化剂、 氧化物催化剂以及其它新型催化剂)的设计与合成方面的研究进展, 最后对该领域所面临的机遇和挑战进行了展望.  相似文献   

4.
化石燃料的广泛使用导致大气中CO2的排放量急剧增加,进而引起全球变暖和海洋酸化等一系列问题.CO加氢(费托合成)反应是利用非石油来源的原料生产液体燃料和化学品的一种重要途径.同时,利用可再生的H2将CO2转化为高附加值的产品有利于减少对化石燃料的依赖,减轻由于大气中CO2浓度过高带来的负面影响.开发新型、高效、稳定的催化剂是费托合成和CO2加氢制高附加值烃的关键因素之一.Fe基、Co基和Ru基催化剂是费托合成中常用的催化剂.而在CO2加氢反应中,Co基和Ru基催化剂上主要发生甲烷化反应,几乎没有长链烃生成.Fe基催化剂在费托合成和CO2加氢反应中均表现出优异的催化生成长链烃性能.同时,Fe储量丰富和价格便宜的特点也促进Fe基催化剂在两个反应中的广泛应用.一般认为,在Fe基催化剂上CO2通过逆水煤气变换反应生成CO,CO通过费托合成反应继续加氢生成烃类.因此,CO2加氢反应和费托合成反应有相似之处,同时也有较大的区别.本文从活性相、助剂和载体的角度综述了各组分在Fe基催化剂催化CO/CO2加氢反应中的作用,总结了其中的区别与联系.催化剂在反应中会发生复杂的相变过程,形成多种铁物种;其中,碳化铁(χ-Fe5C2,ε-Fe2C,Fe7C3和θ-Fe3C)在费托合成反应中是C-C偶联的活性相,但对于θ-Fe3C现还存在一些争议.在CO2加氢反应中Fe3O4催化逆水煤气变换反应,碳化铁催化CO加氢反应.金属助剂对CO/CO2加氢反应的促进作用较为相似,在两个反应中碱金属的促进作用最为明显.费托合成反应对载体有较强的适应性,而CO2加氢反应对载体敏感性较强,Al2O3,ZrO2和碳材料载体效果较好.本文还总结了近些年来基于对活性相、助剂和载体的深入理解设计制备的一些新型催化剂及其在费托合成和CO2加氢反应中的应用,包括具有新颖结构的催化剂、金属-有机骨架衍生催化剂以及与沸石分子筛结合的双功能催化剂.最后,还分析了目前Fe基催化剂在费托合成和CO2加氢反应应用中所面临的问题和挑战,并对未来的发展趋势进行了展望.  相似文献   

5.
化石燃料的广泛使用导致大气中CO2的排放量急剧增加,进而引起全球变暖和海洋酸化等一系列问题.CO加氢(费托合成)反应是利用非石油来源的原料生产液体燃料和化学品的一种重要途径.同时,利用可再生的H2将CO2转化为高附加值的产品有利于减少对化石燃料的依赖,减轻由于大气中CO2浓度过高带来的负面影响.开发新型、高效、稳定的催化剂是费托合成和CO2加氢制高附加值烃的关键因素之一.Fe基、Co基和Ru基催化剂是费托合成中常用的催化剂.而在CO2加氢反应中,Co基和Ru基催化剂上主要发生甲烷化反应,几乎没有长链烃生成.Fe基催化剂在费托合成和CO2加氢反应中均表现出优异的催化生成长链烃性能.同时,Fe储量丰富和价格便宜的特点也促进Fe基催化剂在两个反应中的广泛应用.一般认为,在Fe基催化剂上CO2通过逆水煤气变换反应生成CO,CO通过费托合成反应继续加氢生成烃类.因此,CO2加氢反应和费托合成反应有相似之处,同时也有较大的区别.本文从活性相、助剂和载体的角度综述了各组分在Fe基催化剂催化CO/CO2加氢反应中的作用,总结了其中的区别与联系.催化剂在反应中会发生复杂的相变过程,形成多种铁物种;其中,碳化铁(χ-Fe5C2,ε-Fe2C,Fe7C3和θ-Fe3C)在费托合成反应中是C-C偶联的活性相,但对于θ-Fe3C现还存在一些争议.在CO2加氢反应中Fe3O4催化逆水煤气变换反应,碳化铁催化CO加氢反应.金属助剂对CO/CO2加氢反应的促进作用较为相似,在两个反应中碱金属的促进作用最为明显.费托合成反应对载体有较强的适应性,而CO2加氢反应对载体敏感性较强,Al2O3,ZrO2和碳材料载体效果较好.本文还总结了近些年来基于对活性相、助剂和载体的深入理解设计制备的一些新型催化剂及其在费托合成和CO2加氢反应中的应用,包括具有新颖结构的催化剂、金属-有机骨架衍生催化剂以及与沸石分子筛结合的双功能催化剂.最后,还分析了目前Fe基催化剂在费托合成和CO2加氢反应应用中所面临的问题和挑战,并对未来的发展趋势进行了展望.  相似文献   

6.
CO2大量排放导致的全球气候变化对人类社会的发展造成不利影响,控制CO2排放是摆在全人类面前的一项紧迫任务.利用太阳能等可再生能源获得的绿氢将CO2转化为以甲醇为代表的燃料和化学品,即太阳燃料合成,不仅能够实现CO2的减排利用,而且能够将可再生能源储存于液体燃料,对缓解全球气候变化和能源危机具有重要的战略意义.CO2加氢制甲醇是衔接当下化石能源时代和未来可再生能源时代的重要桥梁,亦是实现碳达峰、碳中和目标切实可行的路径之一.高效、稳定的CO2加氢制甲醇催化剂是实现这条路径的关键因素.在众多催化剂中,以ZnZrOx为代表的固溶体催化剂因具有高甲醇选择性、良好热稳定性、可抗硫中毒特性而备受关注.因此,设计和开发更高效的ZnZrOx固溶体催化剂对于CO2加氢制甲醇规模化应用尤为重要.本文分别利用蒸氨法和共沉淀法制得了相同组成的ZnZrOx固溶体催化剂,并用于催化CO...  相似文献   

7.
随着二氧化碳(CO2)排放量的不断增加, 全球变暖和气候变化的加剧对人类的生存环境产生了巨大的影响. CO2作为廉价、 可再生的碳氧资源, 将其转化为高附加值化学品是绿色化学及能源领域的重要研究课题之一, 受到广泛关注. Pd基催化剂由于具有优异的加氢能力以及良好的抗烧结、 抗毒化性能, 作为CO2催化转化最有前途的催化剂被广泛应用和研究. 本文主要对Pd基催化剂上CO2加氢制备HCOOH, CO, CH4和甲醇等小分子能源化合物的研究进展进行综合评述, 重点关注Pd基催化剂上CO2分子的吸附/活化位点、 催化剂的金属-载体强相互作用及表界面组成等对催化剂活性和选择性的影响以及催化反应机理.  相似文献   

8.
铜基催化剂可被广泛应用于CO2加氢制甲醇,其催化活性高度依赖载体.本文通过St?ber法合成了SiO2纳米微球,将其作为载体制备了Cu-Zn O@Si O2催化剂;将该催化剂应用于CO2加氢制甲醇,并与常规共沉淀法制备的Cu-Zn O催化剂进行了对比.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、氢气程序升温还原(H2-TPR)和二氧化碳程序升温脱附(CO2-TPD)等手段对催化剂进行了表征.结果表明,Cu-Zn O@Si O2催化剂具有更高的Cu分散性和CO2吸附能力,Si O2的加入提高了催化剂表面Cu+/Cu0的比例,从而影响了催化性能.研究发现,在H2/CO2摩尔比为3,230℃,2.0 MPa和气体体积空速为3600 m L·g  相似文献   

9.
近年来, 大气中CO2含量急剧增加, 导致了严重的温室效应. 将CO2作为C1资源转化为燃料或精细化学品引起了越来越多的关注. 开发高效、 稳定、 可回收利用的催化剂成为CO2资源化利用的关键. 在众多的CO2加氢催化剂中, 功能性多孔骨架材料固定型分子催化剂展示出优异的性能, 成为研究的热点之一. 功能性骨架材料, 如多孔有机聚合物(POPs)、 共价有机骨架(COFs)和金属有机骨架(MOFs), 具有比表面积大、 热稳定性高和可调性等特点, 在设计合成催化剂方面发挥着重要作用. 本文介绍了POPs/COFs/MOFs多孔骨架材料固定分子催化剂的开发及在催化CO2合成甲酸领域的最新进展.  相似文献   

10.
刘军辉  宋亚坤  宋春山  郭新闻 《应用化学》2020,37(10):1099-1111
CO2加氢和费托合成反应是C1化学中重要的研究领域,CO2加氢制备高附加值化学品和燃料有助于降低大气中CO2浓度,减轻化石燃料消耗的压力;费托合成反应是以非石油资源为原料生产液体燃料和化学品的重要路径。 开发新型、高效、稳定的催化剂是CO2加氢和费托合成反应的关键点之一。 利用金属-有机骨架(Metal-Organic Frameworks,MOFs)材料的特点制备的MOFs衍生催化剂在CO2加氢和费托合成反应中具有较好的应用前景。 本文综述了CO2加氢和费托合成反应中MOFs衍生催化剂的制备方法,以及催化剂在各反应中的催化性能,并对目前所存在的问题以及今后的发展进行了总结和展望。  相似文献   

11.
以LaCo1-xGaxO3为前驱体,还原后得到的Co/La2O3-La4Ga2O9复合氧化物催化剂,用于CO2加氢直接制乙醇。通过XRD、XPS、TPD和TEM等技术对催化剂结构进行了表征,采用微型固定床反应器在230-290℃、3 MPa、空速(GHSV)为3000 mL/(gcat·h)和H2/CO2进料物质的量比为3.0的条件下,考察了该Co/La-Ga-O复合氧化物用于CO2加氢制乙醇的催化性能。结果显示,该Co/La-Ga-O复合氧化物催化剂对生成乙醇具有很高的选择性。与LaCoO3相比,Ga的掺杂可抑制甲烷的形成,促进醇类(特别是乙醇)的生成。当Co/Ga比为7:3时,还原后的LaCo1-xGaxO3催化剂体现出最好的催化性能,CO2转化率为9.8%,总醇选择性达到74.7%,其中,液相产物中的乙醇质量分数可达到88.1%。基于实验结果推测,该催化剂上Co0和Coδ+的协同作用促使CO2选择性加氢生成乙醇。  相似文献   

12.
将二氧化碳(CO2)催化加氢转化为具有高附加值的烃类化合物,既可减缓大气中CO2浓度的攀升速度,又符合可持续发展战略,对环境和社会均具有重要意义。本文综述了Fe基催化剂上CO2加氢制C2+烃的研究进展,着重介绍了反应路径及机理、催化剂研制及反应器设计,展望了CO2制烃的研究前景。  相似文献   

13.
CO2加氢对于CO2转化制备高附加值化学品和燃料以实现二氧化碳利用及能源储存至关重要。CO2加氢包括甲烷化、逆水煤气变换、甲醇化和CO2直接费托合成等。碳化钼,尤其是其二维材料,由于其低成本和良好的性能而备受关注。在CO2加氢反应中,由于碳的渗入,导致晶格膨胀以及价电子增加,碳化钼基催化剂展现出了类似于贵金属催化剂的性质。碳化钼可以通过程序升温渗碳法、选择性蚀刻法、机械合金合成法、化学气相沉积法、原位热渗碳法以及溶液相合成法等来制备。到目前为止,学者已经对基于碳化钼的材料的CO2转化进行大量研究,这些材料具有良好的CO2转化活性和对目标产物的选择性。碳化钼材料的催化性能可以通过调节碳化钼中的C/Mo比、在碳化钼与负载金属之间建立强的金属-载体相互作用以及调整材料的界面结构来实现。然而,基于碳化钼的热催化CO2转化仍处于初级阶段。本文综述基于碳化钼的热催化CO2加氢制备高附加值化学品和燃料的研...  相似文献   

14.
采用催化加氢的方式将CO2转化为甲醇,既可以减少CO2排放,又制备了化学品,该反应具有重要的研究意义.氧化铟(In2O3)作为CO2加氢制甲醇催化剂,由于其较高的CO2活化能力和甲醇选择性,被科研工作者广泛研究.其中,将具有良好解离H2能力的过渡金属元素引入In2O3(M/In2O3)是有效提高催化剂性能的策略之一,然而,M/In2O3体系催化CO2加氢反应机理及活性位点仍不清楚.本文引入Co制备了In-Co二元金属氧化物催化剂应用于CO2加氢制甲醇,结果表明,相较于In2O3,In-Co催化剂性能有很大提升,其中In1-Co4催化剂上甲醇时空产率(9.7 mmol·gcat-1 h-1)是In2O3(2.2 mmol·gcat-1 h-1)的近5倍(反应条件:P=4.0 MPa,T=300℃,GHSV=24000 cm3 STP gcat-1 h-1,H2/CO2=3).值得注意的是,尽管Co是金属元素的主体,In-Co催化剂中Co催化CO2甲烷化的活性受到明显抑制.本文还通过多种技术系统研究了催化剂结构与反应选择性转变间的关系.采用电感耦合等离子体发射光谱、粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电子显微镜等对催化剂结构以及表面性质进行了表征.结果表明,在H2还原气氛诱导下,In-Co催化剂表面发生重构,形成以CoO为核,以In2O3为壳的核壳结构,其在高压反应后仍能保持稳定;更重要的是,该核壳结构可以显著增强In-Co催化剂吸附及活化CO2的能力.CO2加氢反应动力学研究表明,Co催化剂上H2分压对CO2加氢为零级反应,而H2分压在In-Co上的反应级数为正数;In-Co催化剂上,CO2分压的反应级数接近于零,表明CO2及其衍生物在In-Co的表面吸附饱和,但在纯Co上,则不会发生这种饱和吸附.通过原位DRIFTS研究了催化反应路径和关键中间物种的吸附及反应行为,发现CO2加氢在纯Co和In-Co上的催化机理均遵循甲酸盐路径.在该催化路径中,CO2首先加氢为甲酸盐(*HCOO)物种,随后加氢为甲氧基(*CH3O).*CH3O在Co催化剂上进一步加氢生成CH4,而*CH3O在In-Co催化剂上则会脱附生成CH3OH.根据表征结果,本文认为,在还原性气氛下,In-Co发生了重构并生成表面富In2O3的核壳状结构,显著提高了催化剂对CO2和含碳物种的吸附能力.Co和In-Co催化剂对CO2加氢反应选择性的差异归因于催化剂对CO2和对*HCOO等含碳中间物种的吸附稳定性不同.CO2及其衍生的含碳中间物种在In-Co催化剂上的吸附能力比在Co催化剂上强,形成了较合适的催化剂表面C/H比,从而使*CH3O能够脱附为CH3OH,而不是进一步加氢为CH4.综上,本文研究为高活性In-Co催化剂体系在CO2加氢反应中的催化机理及行为提供了解释,为金属-氧化铟(M-In2O3)催化剂体系的设计提供了参考.  相似文献   

15.
采用催化加氢的方式将CO2转化为甲醇,既可以减少CO2排放,又制备了化学品,该反应具有重要的研究意义.氧化铟(In2O3)作为CO2加氢制甲醇催化剂,由于其较高的CO2活化能力和甲醇选择性,被科研工作者广泛研究.其中,将具有良好解离H2能力的过渡金属元素引入In2O3(M/In2O3)是有效提高催化剂性能的策略之一,然而,M/In2O3体系催化CO2加氢反应机理及活性位点仍不清楚.本文引入Co制备了In-Co二元金属氧化物催化剂应用于CO2加氢制甲醇,结果表明,相较于In2O3,In-Co催化剂性能有很大提升,其中In1-Co4催化剂上甲醇时空产率(9.7 mmol·gcat-1 h-1)是In2O3(2.2 mmol·gcat-1 h-1)的近5倍(反应条件:P=4.0 MPa,T=300℃,GHSV=24000 cm3 STP gcat-1 h-1,H2/CO2=3).值得注意的是,尽管Co是金属元素的主体,In-Co催化剂中Co催化CO2甲烷化的活性受到明显抑制.本文还通过多种技术系统研究了催化剂结构与反应选择性转变间的关系.采用电感耦合等离子体发射光谱、粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电子显微镜等对催化剂结构以及表面性质进行了表征.结果表明,在H2还原气氛诱导下,In-Co催化剂表面发生重构,形成以CoO为核,以In2O3为壳的核壳结构,其在高压反应后仍能保持稳定;更重要的是,该核壳结构可以显著增强In-Co催化剂吸附及活化CO2的能力.CO2加氢反应动力学研究表明,Co催化剂上H2分压对CO2加氢为零级反应,而H2分压在In-Co上的反应级数为正数;In-Co催化剂上,CO2分压的反应级数接近于零,表明CO2及其衍生物在In-Co的表面吸附饱和,但在纯Co上,则不会发生这种饱和吸附.通过原位DRIFTS研究了催化反应路径和关键中间物种的吸附及反应行为,发现CO2加氢在纯Co和In-Co上的催化机理均遵循甲酸盐路径.在该催化路径中,CO2首先加氢为甲酸盐(*HCOO)物种,随后加氢为甲氧基(*CH3O).*CH3O在Co催化剂上进一步加氢生成CH4,而*CH3O在In-Co催化剂上则会脱附生成CH3OH.根据表征结果,本文认为,在还原性气氛下,In-Co发生了重构并生成表面富In2O3的核壳状结构,显著提高了催化剂对CO2和含碳物种的吸附能力.Co和In-Co催化剂对CO2加氢反应选择性的差异归因于催化剂对CO2和对*HCOO等含碳中间物种的吸附稳定性不同.CO2及其衍生的含碳中间物种在In-Co催化剂上的吸附能力比在Co催化剂上强,形成了较合适的催化剂表面C/H比,从而使*CH3O能够脱附为CH3OH,而不是进一步加氢为CH4.综上,本文研究为高活性In-Co催化剂体系在CO2加氢反应中的催化机理及行为提供了解释,为金属-氧化铟(M-In2O3)催化剂体系的设计提供了参考.  相似文献   

16.
等离子体-催化剂耦合作用下CO2的甲烷化研究   总被引:3,自引:0,他引:3  
常温常压下,利用脉冲电晕等离子体与Ni/γ-Al2O3催化剂协同作用CO2加氢转化生成甲烷,考察了催化剂担载量、放电参数、工艺参数等对反应的影响,并探讨了其反应机理.结果表明,在等离子体与催化剂协同作用下,CO2加氢生成CH4,CO2转化率在催化剂一定担载量范围内随担载量的增加而增加;脉冲电压峰值、重复频率、进气方式、空速等对反应有重要影响;相同条件下,等离子体-催化法优于化学催化法.  相似文献   

17.
CO2的化学转化作为碳减排的有效手段受到了广泛关注,近年来,通过热催化工艺将CO2加氢转化为乙醇已经取得了突破性的进展,但仍然存在乙醇选择性及产率低、副产物较多等问题。本工作对热催化CO2加氢制取乙醇的研究进展进行了综述,主要评述了以分子筛、金属氧化物、钙钛矿、二氧化硅、有机框架及金属碳化物等为载体的催化剂应用,分析了不同金属间的协同作用对CO2转化过程的影响以及各类活性物种的介入对于CO2加氢制取乙醇反应的促进作用,总结出能够有效促进C–C键偶联以及CO2吸附和活化的催化剂体系。在此基础上分析了影响CO2加氢制取乙醇的各种因素,并对反应机理进行了讨论。该综述为CO2加氢制备乙醇的催化剂设计、合成工艺条件优化以及催化机理的探究提供参考。  相似文献   

18.
CO2选择性加氢制二甲醚(DME)是实现CO2资源化利用的重要途径之一.然而,该过程面临着多方面的挑战.比如,水分子会限制CO2的高效转化并诱导铜颗粒的团聚,导致催化活性与稳定性不足.此外,沸石分子筛甲醇脱水催化剂的酸性过强容易造成甲醇过度脱水生成低碳烃,导致催化选择性不足.因此,开发高效稳定的CO2加氢制DME催化剂十分必要.本文通过共水解法制备了一系列镓改性的疏水二氧化硅负载铜基催化剂,并通过优化疏水基团含量以及铜与镓的比例来进一步提高催化性能.通过X射线衍射、氢气程序升温还原、X射线光电子能谱和CO吸附红外光谱等方法进行表征,结果表明,镓物种对铜纳米颗粒的电子结构进行了调控,提升了催化剂上Cuδ+物种的含量,从而抑制了逆水煤气转换反应,实现了CO选择性的降低.此外,水蒸气等温吸附、水蒸气程序升温脱附和水滴接触角测试等结果表明,引入疏水甲基基团可以调控催化剂表面的浸润性,提升水分子的扩散速率并抑制其二次吸附.在镓改性和甲基基团疏水修饰的协同作用下,Cu/Ga-SiO  相似文献   

19.
利用光沉积方法在TiO2表面分别负载1%(质量分数) Pt、Pd、Au和Ag助催化剂.用TEM、XRD、UV-vis等技术对催化剂进行了表征,并利用连续瞬态电流时间响应和线性扫描伏安法等电化学方法,对贵金属负载的TiO2光催化剂在光照条件下的电流响应强度及电催化析氢电位等特性加以测试.分析了贵金属助催化剂对光催化还原CO2性能的差异.结果表明,负载贵金属助催化剂能显著加速光生电子空穴的分离,降低复合率;另外,助催化剂对还原CO2选择性的顺序为Ag>Au>Pd>Pt.贵金属助催化剂还原CO2的加氢选择性和析氢过电位存在相关性,即越不利于析氢过程的助催化剂,其催化CO2加氢还原产物的选择性越高.  相似文献   

20.
二氧化碳(CO2)不仅仅是一种温室气体,更是一种重要的、有效的碳一资源,其来源丰富、无毒、无污染、不易燃烧,可用于生产有机化学品、材料、糖类等.由于CO2分子中的碳处于最高氧化态,且其分子具有热力学和动力学惰性,因此人们不断探索新型反应途径,以及新型的催化体系来有效资源化利用CO2.近年来,利用各种不饱和烃类,在过渡金属催化剂协助下催化CO2与烯烃生成不饱和羧酸及其衍生物引起了极大关注.其中,催化CO2/C2H4耦合反应制备丙烯酸及其衍生物因其原子经济性而备受瞩目.以镍系催化体系为主的过渡金属催化CO2/C2H4偶联反应是CO2化学转化与高值利用非常重要的研究热点之一.综述了近年来CO2/C2H4偶联反应的最新进展,对相应的催化反应机理进行了评述.从多个角度对各位学者的研究进行分析比...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号