首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《机械》2018,(11)
针对地铁线路运营过程中频繁出现的天线梁疲劳失效问题开展动应力和振动加速度测试研究。根据动应力测试数据,分析天线梁薄弱处的疲劳寿命,对天线梁进行PolyMAX法模态识别找出其低阶固有频率以及振动频谱分析找出其振动特性传递规律。分析结果表明:天线梁ATP吊座与主管连接的焊缝处发生共振而出现高应力循环,其应力水平和作用频率远高于设计水平,在运营中极易发生疲劳失效。同时基于工程应用方案,对天线梁应力集中部位增加加强筋进行结构优化,测试结果表明,加强筋增加了结构强度、有效减小了动应力的幅值,但没有避开共振。最后基于试验数据和仿真结合,提出了减轻质量提高固有频率以及动力吸振装置来降低振动。结合实际振动环境,要求天线梁的设计应该有效的避开工作模态,而不是仅仅优化局部强度,为动态结构的设计提供新思路。  相似文献   

2.
为了从源头抑制轨道交通产生的振动噪声,采用力锤激励法实测了扣件 钢轨耦联系统的加速度阻抗,从加速度阻抗曲线上得到了钢轨的振动模态及相应固有频率处的加速度阻抗幅值,通过不平顺波长与激振频率关系推出了不同行车速度下最不利不平顺波长。对钢轨进行了频率响应分析、脉冲响应分析和脉冲响应函数的时频分析,分离出了钢轨振动优势频率,其值与从加速度阻抗曲线识别得到的结果一致,同时还得到了优势频率的振动持续时间。试验说明,优势频率是钢轨振动与辐射噪声的主要频率,只要能控制优势频率的振动,就可以抑制钢轨的全频域振动与噪声  相似文献   

3.
轨道短波不平顺是引起轨道-车辆系统高频振动的主要根源,造成轮轨之间剧烈的相互作用力。利用ABAQUS计算软件显式模块建立的轮轨接触有限元模型,用于求解车辆高速运行时轨道短波不平顺作用条件下的高频轮轨接触力。该模型采用轮轨的真实形状建模,并且可引入任意形状的轨道短波不平顺及轨道状态参数。以某高铁线路上实测轨道短波不平顺作为输入,接触模型仿真输出的轮轨垂向力与高速综合检测列车在对应区段上实测轮轨垂向力数据之间的相关系数为0.82,验证了所建模型的正确性。利用高频轮轨模型计算不同速度条件下不同参数的余弦型轨道短波不平顺引起的动态轮轨垂向力,对比分析计算结果表明:动态轮轨垂向力不仅与轨道短波不平顺的幅值有关,还车辆与轨道短波不平顺波长敏感程度有关,在车辆运行速度不低于200 km/h的条件下,车辆对轨道短波不平顺的敏感波长分布在100~200 mm。  相似文献   

4.
针对轨道不平顺及设备运转使高速动车组运行过程中产生复杂的振动、严重降低乘坐舒适性和行驶安全性等问题,对车体进行模态特性分析,以改善车辆的动态响应特性。建立某高速动车组车体有限元模型,计算3种车体不同质量条件下的振动模态,分析设备吊挂位置和吊挂点数目对车体模态频率的影响,得到模态频率和振型的变化规律。在有限元计算的基础上搭建车体模态测试系统,对车体进行模态试验,分析仿真与试验结果的差异及原因,验证数值计算和有限元模型的正确性。结果表明,车体模态频率满足相关设计标准,不同质量的车体低阶模态振型变化趋势一致,吊挂位置对底架垂弯和车体扭转振动频率影响较明显,吊挂点数目增加使车体模态频率逐渐升高。  相似文献   

5.
乐柄伸  吴兴文  黄运华 《机械》2020,47(9):9-16
为了研究高速列车车体的动态薄弱位置及服役条件下薄弱位置应力谱特征,基于车辆系统动力学、有限元理论和刚柔耦合理论,建立了8编组的高速列车高频刚柔耦合动力学模型。基于模态应力恢复法,利用反映服役模式的轮轨扫频激励,研究并识别了车体服役条件下的动态薄弱位置。通过该模型,进一步研究了车体动态薄弱位置处的应力谱特征,分析了不同运营速度和不同曲线半径对特征应力谱的影响。结论表明:车体的动态薄弱位置主要集中在窗角、门框、枕梁、牵引梁与枕梁交接等部位,其对车体一阶垂弯、车体一阶扭转、车体顶棚和侧墙局部高频模态较为敏感。随着车辆运营速度的增加和曲线半径的减小,由于车体模态振动加剧,车体动态薄弱位置的应力幅值显著增加。  相似文献   

6.
转向架构架是车辆走行部主要承载结构,结构的疲劳强度可靠性是核心的设计指标。根据受力分析,构架弹性变形的载荷来自车体振动与轨道不平顺导致的超静定扭曲支撑。基于模态柔性并通过刚柔耦合车辆动力学仿真,分析车辆典型运行状态下构架模态参与系数;构架一阶扭转模态振动响应是构架变形的主要贡献量,且造成了横侧梁连接位置较大应力水平及损伤量;由于构架结构型式为H形,抽象了一种变扭转刚度的构架模型,通过改变耦合扭转刚度来改变构架扭转自振频率。通过惯性释放的准静态叠加法,分析扭转频率从0 Hz到45 Hz下构架不同位置的损伤量。侧梁各位置随着频率增加损伤量增大而横侧梁连接位置则随之降低且敏感性更强。确定了主变形条件下的等刚度设计原则,构架设计应提高横侧梁连接位置刚度。  相似文献   

7.
李俊  张合吉  陈帅  吴磊  王衡禹 《机械》2020,47(8):44-51
钢轨打磨小车是打磨列车进行打磨作业的主要执行机构,钢轨打磨小车工作时的振动状态会直接影响打磨质量。本文为探究钢轨打磨小车的振动特性及其对打磨质量的影响,分别在不同打磨速度和不同轨道波磨条件下进行了钢轨打磨小车的打磨实验,并对钢轨打磨小车在不同工况下的振动特性及打磨对钢轨不平顺质量的改善进行了现场测试。测试结果表明打磨小车在作业时的主要振动激励来源于砂轮与钢轨相互作用产生的振动,其频率与电机转子的旋转频率相同;随着打磨速度的增加,打磨小车各主要结构的振动幅值降低,且打磨后的钢轨不平顺质量有所提高;在具有波磨的轨道上进行打磨作业时,打磨小车各主要结构的振动幅值均高于在无波磨的轨道上打磨的幅值;当波磨的通过频率与打磨电机的激振频率吻合时,对钢轨打磨小车的振动和打磨后的钢轨不平顺质量均不利。  相似文献   

8.
动车组车体正常运营状态下可以保持十分优异的动力学性能,给乘客创造舒适的出行环境,但在偶然情况下也会出现异常弹性振动,也被称为抖车问题,严重影响车辆运行品质。基于线路实测车轮和钢轨外形,建立考虑弹性车体的动车组刚柔耦合动力学模型,仿真再现了动车组车体异常弹性振动现象,并对异常振动原因进行了研究。结果表明:动车组车轮与钢轨匹配关系异常,轮对等效锥度达到0.65,导致转向架蛇行运动频率达到9~10 Hz,与动车组车体一阶菱形模态频率接近,是引发车体产生异常振动的原因。基于此原因,改善轮轨匹配条件、提升车体一阶菱形模态频率和控制转向架蛇行运动相位关系是抑制异常弹性振动的三大方向。通过仿真分析发现,打磨钢轨和镟修车轮均能改善轮轨匹配关系,进而有效解决抖车问题;提升车体一阶菱形模态频率可将转向架蛇行运动频率与车体弹性模态频率分隔开,从而降低车体异常弹性振动;另外,使前后转向架反相位蛇行运动也可以避免激发车体一阶菱形模态。最终建议对异常振动线路轨道进行打磨处理;对于新设计高速动车组车体,建议提升车体一阶菱形模态频率,以提升了动车组车体对磨耗车轮和异常线路的适应性。  相似文献   

9.
摩托车随机振动响应分析   总被引:2,自引:0,他引:2  
研究了摩托车受到不平路面激励而产生的垂向随机振动。摩托车采用四自由度垂向振动模型,构建了摩托车振动分析有限元模型。运用路面不平度随机振动的功率谱密度分析方法,拟合了不同路面等级、不同车速下三种行驶情况的路面时间频率功率谱密度作为路面激励,得出了摩托车整车的模态特性以及对应的加速度响应功率谱密度。结果表明:路面不平度和摩托车行驶速度对结构随机振动响应影响较大,而当结构某阶固有频率与瞬时的空间频率一致时发生共振。此分析方法可用于研究摩托车的舒适性和平顺性,具有较强的工程实用价值。  相似文献   

10.
在巷道堆垛机设计过程中,考虑了轨道高低不平顺对其性能的影响。根据功率谱密度与轨道随机不平顺的关系,基于Blackman-Tukey对轨道不平顺进行数值模拟,将模拟值导入堆垛机的有限元模型中,在不同等级不平顺和不同速度作用下,得出立柱顶端振动位移图、底端应力图和载货台的振动位移图。借助轨道等级功率谱再现虚拟轨道不平顺对巷道堆垛机的设计具有指导意义。  相似文献   

11.
国内某地铁线路运营后曲线轨道出现了短波长钢轨波磨现象,通过力锤敲击法对不同扣件轨道动态特性进行了测试。利用ABAQUS建立了轮轨三维实体有限元模型,分析了轮轨耦合模态特性以及白噪声激励时轨道频响特性。结合试验和仿真结果,分析了轮轨结构动态特性与短波长钢轨波磨之间的相关性。研究结果表明:普通扣件和减振扣件轨道钢轨波磨主波长分别为30~63 mm和40~50 mm;白噪声激励下,两种轨道分别在450~920 Hz和570~720 Hz范围内的敏感共振频率与列车通过钢轨波磨频率(454~954 Hz和572~715 Hz)相吻合;线路轨道短波长波磨的产生主要与轨道结构高频固有特性相关,轨道短波长波磨通过频率与轮轨耦合模态频率相近,其模态振型表现为轮对弯曲扭转的同时,伴随钢轨相对轨道板的垂向弯曲振动,轮轨耦合高频模态特征加剧短波长波磨的发展。  相似文献   

12.
基于动力吸振原理的动车组车下设备悬挂参数设计   总被引:3,自引:2,他引:3  
为降低车体的弹性振动,将车体考虑成弹性欧拉梁,基于动力吸振原理进行多个车下设备的最优悬挂频率设计。建立弹性车体和车下设备的垂向耦合振动数学模型,研究不同设备悬挂频率、联接阻尼、质量和安装位置条件下的车体振动分布规律。建立车辆系统三维刚柔耦合动力学模型,仿真分析在实际线路激扰条件下,车体振动和平稳性随设备悬挂参数变化的分布规律。垂向耦合振动理论分析表明动力吸振原理可用于车下设备悬挂参数设计,验证了用于车体弹性振动减振的可行性和有效性,能够显著降低车体的垂弯模态振动;将大质量设备越靠近车体中部安装时车体的减振效果越好;设备悬挂频率应接近车体的垂弯模态频率,较优的弹性联接阻尼比应满足0.05~0.20。三维刚柔耦合动力学仿真结果验证了理论分析结果,车辆运行速度越高,减振效果越显著。试验台结果表明车下设备采用弹性联接可显著改善高速动车组的乘坐平稳性,与理论和仿真分析结果吻合。  相似文献   

13.
基于隔振原理,首先给出了系统频率避免共振需要满足的条件;其次,以E3C动车组牵引变压器冷却单元风机组为研究对象,建立了详细的有限元模型,通过对其进行模态分析得到变压器组装的刚体振动频率和冷却单元吊梁的弹性振动频率;然后,按照变压器组装的垂向浮沉振动、风机组的自身工作振动、冷却单元吊梁的垂向弹性振动对组合模型振动的影响依次降低的原则,研究了风机组避免与三种激励发生共振所需的悬挂频率与刚度;最后,通过避开三种激励的主共振区得到最优的风机组悬挂频率和风机组安装座减振橡胶刚度。  相似文献   

14.
高压跨接电缆作为动车组动力系统的重要部件,直接决定了动车组能否平稳运行。本文对动车组高压跨接电缆进行了温度-振动双维度的加速寿命试验,建立了温度应力和振动应力的函数与某寿命特征的对数函数的加速寿命模型,通过极大似然函数方法求解模型中的未知参数,获得电缆在常温、正常振动频率时的使用寿命。  相似文献   

15.
将钢轨视为无限长Timoshenko梁,由两层弹簧阻尼系统连续支撑,在频域建立车辆-轨道垂向耦合动力学模型。提出采用格林函数法求解钢轨运动偏微分方程,可在较宽频域内得到轨道动力响应避免模态截断频率限制,结合车辆方程求解点导纳及传递导纳,运用虚拟激励法将真实轨道谱激励作为系统输入,求解车辆-轨道系统随机振动响应,并将该弹性轨道与传统刚性轨道、简化弹簧轨道模型结果进行对比。研究结果表明,采用格林函数法求解无限长Timoshenko梁弹性轨道模型可快速实现全频域计算,得到轨道系统频率响应特性。利用虚拟激励法及叠加法,可得到轮轨多点接触工况下的车辆与轨道结构随机振动响应。采用刚性轨道结构模型会导致过高估计车辆结构在高频的振动,整个耦合系统振动响应均对速度较敏感。考虑轨道弹性影响的弹性轨道模型更符合实际,采用格林函数法求解轨道模型较为快速精确。  相似文献   

16.
桥面不平引起车桥系统随机振动车速因素分析   总被引:1,自引:0,他引:1  
将桥梁离散为梁单元,车辆简化为两自由度系统,桥面不平顺引起的车桥耦合振动荷载等效为虚拟激励荷载,建立移动车辆-桥梁耦合随机振动模型,运用虚拟激励法((pseudo excitation method,简称PEM)并结合模态综合叠加技术进行求解。将数值迭代结果与Monte-Carlo法对比,验证求解算法的正确性。以简支梁桥为例,在频域内对桥面不平顺引起车桥耦合随机振动的车速因素进行分析。结果表明:桥梁跨中竖向位移均方根值随车速变化较大,车速对位移和加速度功率谱曲线的1阶频率峰值和带宽影响显著;近支点加速度功率谱曲线的峰值、频率及带宽随车速变化明显。研究桥面不平顺引起的车桥耦合随机响应,车速对桥梁和车体振动影响不可忽略。  相似文献   

17.
多轴汽车平顺性的柔性模型研究   总被引:3,自引:0,他引:3  
为了分析多轴汽车悬挂质量的弯曲振动对整车平顺性的影响,运用弹性梁弯曲振动理论和模态分析法建立了多轴汽车平顺性分析的柔性模型。用所提出的模型对多轴汽车整车平顺性进行了仿真研究,分析结果表明刚体模型不适合用于多轴汽车平顺性的分析。同时,进行了某五轴重型车的道路行驶试验,通过在不同车速下的仿真结果与道路行驶试验结果的比较,证明了所提出的平顺性分析建模方法和模型是可行的。  相似文献   

18.
黏弹性梁弯曲振动的复模态分析   总被引:2,自引:0,他引:2  
刘芳  陈立群 《机械强度》2005,27(5):586-589
发展复模态分析研究黏弹性梁的弯曲振动。将梁的控制方程写作状态变量的形式,然后利用复模态的正交性可解耦为无穷多个彼此独立的常微分方程组。基于固有频率和模态函数,可以得到黏弹性梁对于任意初始条件和外激励的响应。在固支梁的边界条件下确定黏弹性梁的固有频率、衰减系数和模态函数,并计算梁受两种典型的外激励时的响应。  相似文献   

19.
针对汽车后扭力梁结构在道路随机载荷激励下容易出现振动疲劳现象,采用模态试验法对其在自由状态下的模态参数进行分析,获取其振动特性。通过对模态试验中的悬挂位置、激励位置和测点位置的优化,测得后扭力梁的自由模态频率。最后将模态试验获取的后扭力梁结构前十阶自由模态频率与有限元计算结果进行比较,分析表明采用优化后的模态试验方案能够获得较准确的结构自由模态频率,与有限元计算结果具有很好的一致性。  相似文献   

20.
根据车体的结构属性和质量分布将其考虑为多段变截面欧拉梁,建立包含车体一阶垂弯模态的车辆垂向动力学模型,研究车体一阶垂弯振型的节点位置对高速列车振动舒适度的影响,提出改善车体弹性振动的措施。基于变截面欧拉梁模型分析车体各截面的质量和抗弯刚度分布对模态振型的影响,发现不同截面之间的抗弯刚度和质量分布对整体模态振型影响显著,提高车体中部结构的抗弯刚度并减小其质量,可以增大节点间距和提高模态频率,而传统均直等截面梁模型则不能准确描述振型的幅值和节点位置。采用频域分析方法计算车辆在轨道随机激励下的振动响应,将车体垂弯振型节点调整到转向架二系上方附近时,车体的弹性振动水平显著降低,在车速为300 km/h时车辆舒适度指标可降低50%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号