首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper proposes an analytical methodology of inverse kinematic computation for 7 DOF redundant manipulators with joint limits. Specifically, the paper focuses on how to obtain all feasible inverse kinematic solutions in the global configuration space where joint movable ranges are limited. First, a closed-form inverse kinematic solution is derived based on a parameterization method. Second, how the joint limits affect the feasibility of the inverse solution is investigated to develop an analytical method for computing feasible solutions under the joint limits. Third, how to apply the method to the redundancy resolution problem is discussed and analytical methods to avoid joint limits are developed in the position domain. Lastly, the validity of the methods is verified by kinematic simulations.   相似文献   

2.
A recurrent neural network, called the Lagrangian network, is presented for the kinematic control of redundant robot manipulators. The optimal redundancy resolution is determined by the Lagrangian network through real-time solution to the inverse kinematics problem formulated as a quadratic optimization problem. While the signal for a desired velocity of the end-effector is fed into the inputs of the Lagrangian network, it generates the joint velocity vector of the manipulator in its outputs along with the associated Lagrange multipliers. The proposed Lagrangian network is shown to be capable of asymptotic tracking for the motion control of kinematically redundant manipulators.  相似文献   

3.
Real-time motion planning under position and torque constraints is a critical challenge for cooperative manipulator efficiency and safety operation. Real-time motion planning at the velocity level improves computation efficiency, eliminates the complex derivative calculation of the Jacobian matrix, and the velocity planning solution can be used directly for robotic kinematic control. However, little research attention has been attached to handling the position and torque constraints simultaneously at velocity level for cooperative manipulator systems. In this paper, we introduce a novel homogeneous weighted least-norm method (HWLN) for joint velocity redistribution of cooperated manipulators. Within the coupled kinematics-dynamics model of cooperated manipulators, joint position and torque constraints are simultaneously homogenized and taken into account by the constraint performance index. To avoid joint's constraint saturations, two real-time weight updating laws are designed for the joint position and driving torque respectively. The joint velocities of cooperated manipulators are then adaptively redistributed using the pseudo-kinetic-energy minimum optimization criteria. When compared to single manipulator regulation, this strategy takes greater advantage of cooperative redundancy and significantly enhances the position-torque planning performance. Mathematical stability proof is presented. In the meanwhile, numerical experiment results under various joint position and torque constraints demonstrate the effectiveness of the proposed HWLN method. The experimental results for motion planning and control of two 6R ABD-20Kg robotic manipulators are provided.  相似文献   

4.
In this work the topic of kinematic redundancy modelling and resolution for robotic mobile manipulators is considered. A set of redundancy parameters is introduced to define a general inverse kinematic procedure for mobile manipulators. Then, redundancy is treated as a non-linear optimization problem with the purpose of finding robot configurations that maximize the designed metric measures. Some strategies to design the optimization objective function are introduced in order to achieve desirable redundant behaviours, such as obstacles avoidance, mobile base motions reductions and dexterity optimization. Moreover, the robot controller has been developed following an object-oriented software architecture principle that allows to keep it general and robot independent. As a prove of reliability and generality of our approach, the same controller has been used to control several different mobile manipulators in a simulation environment, as well as a real KUKA youBot robot.  相似文献   

5.
In this paper, a novel adaptive multi-priority controller for redundant manipulators is proposed to accomplish the multi-task tracking when kinematic/dynamic uncertainties and unknown disturbances exist. Prioritized redundancy resolution in kinematic level is incorporated into this passivity-based control framework. The kinematic and dynamic parameter adaptations are driven by both tracking error and prediction error. Moreover, the tracking information from both primary and subtasks are all utilized to accelerate the parameter estimation when the tasks are independent, whereas the inevitable tracking error of the subtasks due to algorithmic singularities is properly eliminated in the adaptation laws when the tasks are dependent. Potential ill-conditioned solution of the pseudoinverse is avoided using an improved singularity-robust inverse of the projected Jacobian. Along with the improvement of the multi-task tracking performance, smoothness of the commanded torques is still guaranteed for easy application. Measurements of the noisy joint acceleration and task velocity are avoided. The controller is mathematically derived based on Lyapunov stability analysis. Simulation results of the two cases are presented to verify the effectiveness and superiority of the proposed controller.  相似文献   

6.
The computational efficiency of inverse dynamics of a manipulator is important to the real-time control of the system. For serial manipulators, the recursive Newton-Euler method has been proven to be the most efficient. However, for more general manipulators, such as serial manipulators with closed kinematic loops or parallel manipulators, it must be modified accordingly and the resultant computational efficiency is degraded. This article presents a computationally efficient scheme based on the virtual work principle for inverse dynamics of general manipulators. The present method uses a forward recursive scheme to compute velocities and accelerations, the Newton-Euler equation to calculate inertia forces/torque, and the virtual work principle to formulate the dynamic equations of motion. This method is equally effective for serial and parallel manipulators. For serial manipulators, its computational efficiency is comparable to the recursive Newton-Euler method. For parallel manipulators or serial manipulators with closed kinematic loops, it is more efficient than the existing methods. As an example, the computations of inverse dynamics (including inverse kinematics) of a general Stewart platform require only 842 multiplications, 511 additions, and 12 square roots.  相似文献   

7.
A new approach for the solution of the position, velocity, and acceleration of hyperredundant planar manipulators following any twice‐differentiable desired path is presented. The method is singularity free, and provides a robust solution even in the event of mechanical failure of some of the robot actuators. The approach is based on defining virtual layers, and dividing them into virtual/real three‐link or four‐link subrobots. It starts by solving the inverse kinematic problem for the subrobot located in the lowest virtual layer, which is then used to solve the inverse kinematic equations for the subrobots located in the upper virtual layers. An algorithm is developed that provides a singularity‐free solution up to the full extension through a configuration index. The configuration index can be interpreted as the average of the determinants of the Jacobians of the subrobots. The equations for the velocities and accelerations of the manipulator are solved by extending the same approach, and it is shown that the value of the configuration index is critical in maintaining joint velocity continuity. The inverse dynamic problem of the robot is also solved to obtain the torques required for the robot actuators to accomplish their tasks. Computer simulations of several hyperredundant manipulators using the proposed method are presented as numerical examples. © 2002 John Wiley & Sons, Inc.  相似文献   

8.
This paper presents an improved neural computation where scheme for kinematic control of redundant manipulators based on infinity-norm joint velocity minimization. Compared with a previous neural network approach to minimum infinity-non kinematic control, the present approach is less complex in terms of cost of architecture. The recurrent neural network explicitly minimizes the maximum component of the joint velocity vector while tracking a desired end-effector trajectory. The end-effector velocity vector for a given task is fed into the neural network from its input and the minimum infinity-norm joint velocity vector is generated at its output instantaneously. Analytical results are given to substantiate the asymptotic stability of the recurrent neural network. The simulation results of a four-degree-of-freedom planar robot arm and a seven-degree-of-freedom industrial robot are presented to show the proposed neural network can effectively compute the minimum infinity-norm solution to redundant manipulators.  相似文献   

9.
In this paper, we propose a virtual joint method that better utilizes quasi-velocities for the kinematic modeling of wheeled mobile manipulators. By identifying quasi-velocities as motions of imaginary revolute and prismatic kinematic pairs, our method enables one to regard a mobile manipulator as an ordinary articulated manipulator for the purposes of velocity analysis. We also propose an inverse kinematic scheme for the mobile manipulators along the line with the virtual joint based kinematic framework. Details are worked out for mobile manipulators with representative differential-drive and car-like mobile platforms.  相似文献   

10.
Real-time robot control requires efficient inverse kinematics transformations to compute the temporal evolution of the joint coordinates from the motion of the end-effector. The development of a coherent, general-purpose framework, incorporating position, velocity and acceleration transformations, is the theme of this paper. In this framework, the computational requirements of a new inverse kinematic algorithm are delineated. The algorithm is applicable to serial (open-chain) manipulators with arbitrary axes of motion. Comparative evaluations of the computational cost of the algorithm demonstrate its efficacy and feasibility for real-time applications.  相似文献   

11.
The paper presents a genetic algorithm approach to real-time motion tracking of redundant and non-redundant manipulators. The joint angle trajectories are found by applying genetic operators to a set of suitably generated configurations so that the end-effector follows a desired workspace trajectory accurately. The probability of applying a particular genetic operator is adapted on-line to achieve fast convergence to the solution. The adaptation is based on two measures, namely, diversity and fitness of the generated configurations. In order to achieve real time tracking, special provisions are made so that only an appropriate small region in the joint space is searched. The tracking problem is solved at the position level rather the then velocity level. As such the proposed method does not use the manipulator Jacobian inverse or pseudo-inverse matrix and is shown to be free from problems such as excessive joint velocities due to singularities. Simulation results are presented for the 6-DOF Puma and the 7-DOF Robotic Research arm that demonstrate good tracking accuracy and reasonable joint velocities.  相似文献   

12.
Fuzzy logic-based optimization for redundant manipulators   总被引:3,自引:0,他引:3  
Redundant manipulators have more degrees of freedom (DOF) than the DOF of the task space. This implies that the number of joint position variables is greater than the number of variables specifying the task. The problem of solving the kinematic equations for the joint variables is underspecified unless additional equations/constraints are introduced to obtain a well-posed problem. A dynamic level redundancy resolution is proposed. The joint space model is transformed to a reduced-order model in the pseudovelocity space. The elements of the foregoing transformation matrix indirectly determine the contribution of each joint to the total motion. These elements are selected using two fuzzy logic-based methods so as to minimize the instantaneous manipulator power: (1) in the velocity method, a space vector in the velocity relationship between the two spaces is determined by imposing a constraint on the continuity of the joint velocities at the time instant when the elements of the transformation matrix experience a discontinuity and (2) in the torque method, an alternative approach introduced to reduce the computational complexity, the changes in the transformation matrix are made continuous with respect to time by the appropriate choice of a space vector in the joint torque expression. Simulations are given.  相似文献   

13.
In this work the inverse velocity, acceleration and jerk analyses of a class of three-degrees-of-freedom parallel manipulators are approached by means of the theory of screws. The concept of reciprocal screws allows to obtain simple and decoupled expressions to compute the joint rates, up to the third time derivative, of the class of manipulators under study given the instantaneous kinematic properties of the center of the moving platform. The interdependency between the angular and linear kinematic properties of the moving platform is also derived. A case study is included.  相似文献   

14.
Kinematic control of redundant robots and the motion optimizabilitymeasure   总被引:1,自引:0,他引:1  
This paper treats the kinematic control of manipulators with redundant degrees of freedom. We derive an analytical solution for the inverse kinematics that provides a means for accommodating joint velocity constraints in real time. We define the motion optimizability measure and use it to develop an efficient method for the optimization of joint trajectories subject to multiple criteria. An implementation of the method for a 7-dof experimental redundant robot is present.  相似文献   

15.
This paper proposes a primal-dual neural network with a one-layer structure for online resolution of constrained kinematic redundancy in robot motion control. Unlike the Lagrangian network, the proposed neural network can handle physical constraints, such as joint limits and joint velocity limits. Compared with the existing primal-dual neural network, the proposed neural network has a low complexity for implementation. Compared with the existing dual neural network, the proposed neural network has no computation of matrix inversion. More importantly, the proposed neural network is theoretically proved to have not only a finite time convergence, but also an exponential convergence rate without any additional assumption. Simulation results show that the proposed neural network has a faster convergence rate than the dual neural network in effectively tracking for the motion control of kinematically redundant manipulators.  相似文献   

16.
We consider nonholonomic mobile manipulators built from an n a joint robotic arm and a nonholonomic mobile platform with two independently driven wheels. Actually, there is no efficient kinematic formalism for these systems which are generally characterized by their high number of actuators. So, kinematic modelling is presented with particular emphasis on redundancy. Whereas kinematic redundancy is well known in the holonomic case, it is pointed out that it is necessary to define velocity redundancy in the case of nonholonomic systems. Reduced velocity kinematics based on quasi-velocities are shown to provide an efficient formalism. Two examples of mobile manipulators are presented. Finally, reduced velocity kinematics and velocity redundancy are shown to be adequate tools in order to realize operational task while optimizing criteria such as manipulability.  相似文献   

17.
Using inverse kinematic solutions for self-motion of a class of 9-R redundant robots, a conjugate-gradient based constrained optimization scheme for incremental trajectory planning is formulated. The proposed scheme has been evaluated and proved to be an efficient optimization method for redundancy utilization. It can also be used for studying 7-R and 8-R manipulators by simply restricting to one-variable and two-variable optimization, respectively. In contrast with other approaches which are based on the Jacobian, our scheme exploits the availability of closed-form inverse kinematic solutions to give more effective and accurate results.  相似文献   

18.
In this article, a stable local solution with global characteristics is developed for the joint torque optimization problem in redundant robotic manipulators. It is shown that the local optimization of the inertia inverse weighted dynamic torque corresponds to the global kinetic energy minimization problem. The proposed local-global alternative to the joint torque optimization problem is compared for stability and torque optimality with five different methods used for redundancy resolution of robotic manipulators at the acceleration level. The proposed local-global solution has been implemented and tested on a planar four-DOF kinematically redundant lab robot which was designed and built at Southwest Research Institute (SWRI). Several numerical simulations confirm the positive advantages of solutions which have a local as well as a global interpretation. In addition, a “dynamic manipulation index” is introduced to monitor the stability of an optimization problem in a kinematically redundant robot.  相似文献   

19.
A new control method for kinematically redundant manipulators having the properties of torque-optimality and singularity-robustness is developed. A dynamic control equation, an equation of joint torques that should be satisfied to get the desired dynamic behavior of the end-effector, is formulated using the feedback linearization theory. The optimal control law is determined by locally optimizing an appropriate norm of joint torques using the weighted generalized inverses of the manipulator Jacobian-inertia product. In addition, the optimal control law is augmented with fictitious joint damping forces to stabilize the uncontrolled dynamics acting in the null-space of the Jacobian-inertia product. This paper also presents a new method for the robust handling of robot kinematic singularities in the context of joint torque optimization. Control of the end-effector motions in the neighborhood of a singular configuration is based on the use of the damped least-squares inverse of the Jacobian-inertia product. A damping factor as a function of the generalized dynamic manipulability measure is introduced to reduce the end-effector acceleration error caused by the damping. The proposed control method is applied to the numerical model of SNU-ERC 3-DOF planar direct-drive manipulator.  相似文献   

20.
Robot arm reaching through neural inversions and reinforcement learning   总被引:1,自引:0,他引:1  
We present a neural method that computes the inverse kinematics of any kind of robot manipulators, both redundant and non-redundant. Inverse kinematics solutions are obtained through the inversion of a neural network that has been previously trained to approximate the manipulator forward kinematics. The inversion provides difference vectors in the joint space from difference vectors in the workspace. Our differential inverse kinematics (DIV) approach can be viewed as a neural network implementation of the Jacobian transpose method for arm kinematic control that does not require previous knowledge of the arm forward kinematics. Redundancy can be exploited to obtain a special inverse kinematic solution that meets a particular constraint (e.g. joint limit avoidance) by inverting an additional neural network The usefulness of our DIV approach is further illustrated with sensor-based multilink manipulators that learn collision-free reaching motions in unknown environments. For this task, the neural controller has two modules: a reinforcement-based action generator (AG) and a DIV module that computes goal vectors in the joint space. The actions given by the AG are interpreted with regard to those goal vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号