首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Velon  A.  Yi  D.-Q. 《Oxidation of Metals》2002,57(1-2):13-31
The influence of chromium on the mechanical properties of the aluminides Fe3Al and Ni3Al has been studied extensively. In order to evaluate the role of Cr during the early stages of oxidation, Fe3Al and Ni3Al containing 2 and 4 at.% Cr were oxidized in dry air at 500°C for 6, 50, and 100 hr. The oxide scale on Fe3Al consists of a layer of Fe2O3 mixed with FeAl2O4 on top of a continuous layer of (Al, Cr)2O3. Ni3Al is covered with a mixed layer of (Al, Cr)2O3 and NiO/NiAl2O4 underneath a layer of NiO/NiAl2O4. Moreover, Cr induces the nucleation and growth of Fe2O3 and NiO particles at the oxide surface of Fe3Al and Ni3Al, respectively. This is due to enhanced cationic diffusion through the Cr-modified oxides. As a conclusion, additions of Cr up to 4 at.% are detrimental to the oxidation behavior of both aluminides at 500°C.  相似文献   

2.
The corrosion behavior of Ni3Al containing small additions of Ti, Zr, and B in combustion gases both with and without Na2SO4–NaCl deposits at 600–800°C has been studied for times up to four days. The corrosion of the saltfree Ni3Al leads to the formation of very thin alumina scales at 600°C but of mixed NiO–Al2O3 scales containing also some sulfur compounds at higher temperatures, while the rate increases with temperature up to 800°C. The presence of the salt deposits considerably accelerates the corrosion rate, especially at 600 and 800°C. The duplex scales formed at 600°C are composed mostly of a mixture of NiO and unreacted salt in the outer layer and of alumina and aluminum sulfide with some nickel compounds in the inner layer. The scales grown at 700°C contain only one layer of complex composition, while those grown at 800°C are similar but have an additional outer layer containing similar amounts of nickel and aluminum. At 600 and 700°C NiSO4 can be detected also in the salt layer. The samples corroded at 700°C and 800°C also show an Al-depleted zone containing titanium sulfide precipitates at the surface of the alloy. The hot corrosion of Ni3Al involves a combination of various mechanisms, including fluxing of the oxide scale as well as mixed oxidation-sulfidation attack. At all temperatures Ni3Al shows poor resistance to hotcorrosion attack as a result of the formation of large amounts of Ni compounds in the scales.  相似文献   

3.
The high-temperature oxidation behaviour of pure Ni3Al alloys in air was studied above 1000°C. In isothermal oxidation tests between 1000 and 1200°C, Ni3Al showed parabolic oxidation behavior and displayed excellent oxidation resistance. In cyclic oxidation tests between 1000 and 1300°C, Ni3Al exhibited excellent oxidation resistance between 1000 and 1200°C, but drastic spalling of oxide scales was observed at 1300°C. When Ni3Al was oxidized at 1000°C, Al2O3 was present as -Al2O3 in a whisker form. But, at 1100°C the gradual transformation of initially formed metastable -Al2O3 to stable -Al2O3 was observed after oxidation for about 20 hr. After oxidation at 1200°C for long times, the formation of a thick columnar-grain layer of -Al2O3 was observed beneath a thin and fine-grain outer layer of -Al3O3. The oxidation mechanism of pure Ni3Al is described.  相似文献   

4.
The oxidation behavior of a Ni3Al powder-metallurgical (PM) alloy doped with boron was investigated by means of discontinuous isothermal tests in the temperature range of 535° to 1020°C for exposures of up to 150 hr. The oxidation kinetics were characterized by a sharp decrease in the oxidation rate at about 730°C which is associated with a change in the oxidation mechanism. Below 730°C, the scale exhibited an outer NiO layer and an internal-oxidation zone consisting of a fine dispersion of alumina in a diluted Ni-Al solid solution. Between these two layers a very thin layer of nickel could be observed. Above 730°C, a three-layered scale was observed consisting of an outer NiO layer, an intermediate layer that depending on temperature consisted of a mixture of nickel and aluminum oxides or NiAl2O4, and an inner layer of Al2O3, which accounts for the higher oxidation resistance. Oxidation at the higher temperatures resulted in extensive void formation at the scale/metal interface which led to poorly adherent scales. It is worth noting that at the early oxidation stage the scale was characterized by planar interfaces. Roughening of the air/scale and, specially, the scale/metal interfaces after long exposures at the low-temperature range or after short times at higher temperatures could be related to the formation of the inner Al2O3 layer at the grain boundaries which favor oxygen penetration through the grain interior.  相似文献   

5.
The corrosion behavior of a Nb-modified Ti3Al intermetallic compound containing 11 at.% Nb in a simulated combustion gas with and without deposits of a Na2SO4–NaCl mixture was examined at 600–800°C for times up to four days. In the absence of salt deposits the corrosion rates were rather low and increased only slightly with temperature, producing very thin scales of mixed oxides of Ti, Al, and Nb without sulfides. The presence of the salt deposits produced higher weight gains during an initial stage of one to two days at 600 and 700°C, after which the reaction stopped. A more important and longlasting effect was observed instead at 800°C, when the kinetics of hot corrosion became nearly linear. The scales formed by hot corrosion were complex mixtures of various corrosion products at all temperatures and showed a porous outer region containing a mixture of unreacted salts with oxides (mainly TiO2), an intermediate region of a mixture of variable composition of oxides of the three metals, and a TiO2-rich layer beneath it. At 800°C the scales tended to form a thin, discontinuous Al2O3-rich layer in the middle and contained an additional innermost region presenting a large concentration of sulfur, very likely as Nb and Ti sulfides. The high rate of hot corrosion at 800°C is attributed to the appearance of sulfides in the inner region of the scale and to a more efficient scale fluxing.  相似文献   

6.
Ni3Al+5% Cr and Ni3Al+5% Cr+0.3% Y (wt.%) microcrystalline coatings were produced using a close-field, unbalanced magnetron-sputter deposition (CFUMSD) technique. Isothermal and cyclic-oxidation tests were carried out to assess the oxidation resistance of the coatings. The results showed that Al2O3 formed on the coatings as the main oxidation products, with the formation of - and -Al2O3 scales at 900 and 1200°C, respectively. The spallation resistance of the Al2O3 scales formed on the coatings was superior to the oxide scales formed on cast Ni3Al. After oxidation, interfacial voids were observed on the oxide–metal interface of the cast alloy while no voids were found on the coating surfaces. On the basis of the enhancement of Al diffusion, because of the high density of grain boundaries in the coatings, oxidation mechanisms were proposed.  相似文献   

7.
The corrosion behavior of eight Fe-Nb-Al ternary alloys was studied over the temperature range 700–980°C in H2/H2O/H2S atmospheres. The corrosion kinetics followed the parabolic rate law for all alloys at all temperatures. The corrosion rates were reduced with increasing Nb content for Fe-x Nb -3Al alloys, the most pronounced reduction occurred as the Nb content increased from 30 to 40 wt.%. The corrosion rate of Fe-30Nb decreased by six orders of magnitude at 700°C and by five orders of magnitude at 800°C or above by the addition of 10 wt.% aluminum. The scales formed on low-Al alloys (3 wt.% Al) were duplex, consisting of an outer layer of iron sulfide (with Al dissolved near the outer-/inner-layer interface) and an inner complex layer of FexNb2S4(FeNb2S4 or FeNb3S6), FeS, Nb3S4 (only detected for Nb contents of 30 wt.% or higher) and uncorroded Fe2Nb. No oxides were detected on the low-Al alloys after corrosion at any temperature. Platinum markers were found to be located at the interface between the inner and outer scales for the low-Al alloys, suggesting that the outer scale grew by the outward transport of cations (Fe and Al) and the inner scale grew by the inward transport of sulfur. The scales formed on high-Al alloys (5 wt.% Al) were complex, consisting primarily of Nb3S4, Al2O3 and (Fe, Al)xNb2S4, and minor amounts of (Fe, Al)S and uncorroded intermetallics (FeAl and Fe2Nb). The formation of Nb3S4 and Al2O3 blocked the transport of iron through the inner scale, resulting in the significant reduction of the corrosion rates.  相似文献   

8.
The cyclic carburization of electrodeposited pure and CeO2-dispersed Ni3Al intermetallic coatings on Fe–Ni–Cr alloys has been investigated at 850 and 1050°C for periods up to 500 h in a reducing 2%CH4–H2 atmosphere. At 850°C, all Ni3Al-base-coating samples showed excellent carburization resistance and slow mass increases due to the formation of a thin γ-Al2O3 scale and a low carbon activity (a c = 0.73). At 1050°C and a high carbon activity (a c = 3.21), all coatings are superior to the uncoated Fe–Ni–Cr alloy in terms of carburization resistance. A thin α-Al2O3 scale slowly formed on all Ni3Al coatings effectively blocked the carbon attack. The addition of CeO2 particles in the Ni3Al coatings significantly mitigated the cracking of the α-Al2O3 scale and the resultant internal oxidation and carburization. For all coatings, Ni-rich particles were found to be formed on the α-Al2O3 scale during oxidation, which had led to the deposition of catalytic coke.  相似文献   

9.
The corrosion behavior of five Fe-Al binary alloys containing up to 40 at. % Al was studied over the temperature range of 700–900°C in a H2/H2S/H2O mixture with varying sulfur partial pressures of 10–7–10–5 atm. and oxygen partial pressures of 10–24–10–2° atm. The corrosion kinetics followed the parabolic rate law in all cases, regardless of temperature and alloy composition. The parabolic rate constants decreased with increasing Al content. The scales formed on Fe-5 and –10 at.% Al were duplex, consisting of an outer layer of iron sulfide (FeS or Fe1–xS) and an inner complex scale of FeAl2S4 and FeS. Alloys having intermediate Al contents (Fe-18 and –28 at.% Al) formed scales that consisted of mostly iron sulfide and Al2O3 as well as minor a amount of FeAl2S4. The amount of Al2O3 increased with increasing Al content. The Fe 40 at.% Al formed only Al2O3 at 700°C, while most Al2O3 and some FeS were detected at T800°C. The formation of Al2O3 was responsible for the reduction of the corrosion rates.  相似文献   

10.
Co–15 at.% Nb alloys containing up to 15 at.% Al were corroded in gaseous H2–H2O–H2S mixtures over the temperature range of 600–900°C. The corrosion kinetics followed the parabolic rate law at all temperatures. Corrosion resistance improved with increasing Al content except at 900°C. Duplex scales formed on alloys consisting of an outer layer of cobalt sulfide and a heterophasic inner layer. A small amount of Al2O3 was found only on Co–15Nb–15Al. Contrary to what formed in Co–Nb binary alloys, neither NbS2 nor NbO2 were found in the inner layer of all alloys, but Nb3S4 did form. The absence of NbS2 and NbO2 is due to the formation of stable Al2O3 and Al2S3 that effectively blocked the inward diffusion of oxygen and sulfur, respectively, and to the reduction of activity of Nb by Al additions in the alloys. Intercalation of ions in the empty hexagonal channels of Nb3S4 is associated with the blockage of the transport of cobalt. An unknown phase (possibly Al0.5NbS2) was detected. Alloys corroded at 900°C were abnormally fast and formed a scale containing CoNb3S6 and Co. Pt markers were found at the interface between the inner and outer layers.  相似文献   

11.
The air oxidation characteristics of Fe3Al-4%Cr-(0, 0.5, 1, 2%)Mo alloys at 1000°C were studied using TGA, XRD, EPMA, and TEM/EDS. Molybdenum increased the oxidation resistance of Fe3Al-4%Cr alloys. The whole Al2O3 grains that formed on the alloy surface contained a small amount of dissolved Fe ions. The Al2O3 grains next to the oxide-matrix interface additionally contained a small amount of dissolved Cr and Mo ions. Beneath the thin but non adherent Al2O3 layer, an Al-depleted, Fe-enriched matrix zone formed due to the consumption of Al in the scale.  相似文献   

12.
The oxidation behavior of Ni3Al+2.90 wt.% Cr, Ni3Al+3.35 wt% Co, and Ni3Al+2.99 wt.% Ti alloys was studied in 1 atm of air at 1000, 1100, and 1200°C. Isothermal tests revealed parabolic kinetics for all three alloys at all temperatures. Cyclic oxidation for 28 two-hour cycles produced little spallation at 1000°C, but caused partial spallation at 1100°C. Especially, at 1200°C severe spallation in all three alloys was observed. Although additions of Cr, Co, or Ti to Ni3Al alloys slightly increased the isothermal-oxidation resistance, the additions tended to decrease the cyclic-oxidation resistance. The major difference in the oxidation of the three alloys compared with the oxidation of pure Ni3Al alloys was the existence of small -Al2O3 particles in the middle of the -Al2O3 scale and the formation of irregularly shaped Kirkendall voids at the alloy-scale interface.  相似文献   

13.
The corrosion behavior of 11 Fe-Mo-Al ternary alloys was studied over the temperature range 700–980°C in H2/H2O/H2S mixed-gas environments. With the exception of Fe-10Mo-7Al, for which breakaway kinetics were observed at higher temperatures, all alloys followed the parabolic rate law, despite two-stage kinetics which were observed in some cases. A kinetics inversion was observed for alloys containing 7 wt.% Al between 700–800°C. The corrosion rates of Fe-20Mo and Fe-30Mo were found to be reduced by five orders of magnitude at all temperatures by the addition of 9.1 or higher wt.% aluminum. The scales formed on low-Al alloys (5 wt.% Al) were duplex, consisting of an outer layer of iron sulfide (with some dissolved Al) and a complex inner of Al0.55Mo2S4, FeMo2S4, Fe1.25Mo6S7.7, FeS, and uncorroded FeAl and Fe3Mo2. Platinum markers were always located at the interface between the inner and outer scales for the low-Al alloys, indicating that outer-scale growth was due mainly to outward diffusion of cations (Fe and Al), while the inner scale was formed primarily by the inward flux of sulfur anions. Alloys having intermediate Al contents (7 wt.%) formed scales that consisted of FeS and Al2O3. The amount of Al2O3 increased with increasing reaction temperature. The high-Al-content alloys (9.1 and 10 wt.%) formed only Al2O3 which was responsible for the reduction of the corrosion rates.  相似文献   

14.
Isothermal and cyclic oxidation resistance at 1000°C in air were investigated for a cast Cr-containing Ni3Al-base alloy and its sputtered nanocrystalline coating. The results indicated that both the cast Ni3Al alloy and its sputtered coating exhibit excellent isothermal oxidation resistance as a result of the formation of Al2O3 scales. However, the cast alloy possesses very poor cyclic oxidation resistance because of the spallation of the initially formed Al2O3 scale during cooling and subsequent formation of NiO. On the contrary, the sputtered Ni3(AlCr) nanocrystalline coating exhibits very good cyclic oxidation resistance due to the significant improvement of the adhesion of Al2O3.  相似文献   

15.
Pint  B. A.  Garratt-Reed  A. J.  Hobbs  L. W. 《Oxidation of Metals》2001,56(1-2):119-145
Alumina scales formed during cyclic oxidation at 1200°C on three Y2O3–Al2O3-dispersed alloys: Ni3Al, -NiAl, and FeCrAl (Inco alloy MA956) were characterized. In each case, the Y2O3 dispersion improved the -Al2O3 scale adhesion, but in the case of Ni3Al, an external Ni-rich oxide spalled and regrew, indicating a less-adherent scale. A scanning-transmission electron microscope (STEM) analysis of the scale near the metal–scale interface revealed that the scale formed an ODS FeCrAl showed no base metal-oxide formation. However, the scale formed on ODS Ni3Al showed evidence of cracking and Ni-rich oxides were observed. The microstructures and mechanisms discussed may be relevant to a thermal-barrier coating with an Al-depleted aluminide bond coat nearing failure.  相似文献   

16.
The present paper focuses on the investigation of the relationship between microstructure of Fe3Al prepared by hot isostatic pressing (HIP) and kinetics of alumina layer formation during oxidation at 900 °C, 1000 °C and 1100 °C. As prepared HIPed Fe3Al sample reveals lamellar microstructure with inhomogeneous Al distribution which originates from the preliminary mechanical activation of Fe-Al mixture. At 900 °C, Fe3Al oxidation is characterized by selective growth of very rough alumina layer containing only transient aluminium oxides. In addition to these transient oxides, α-Al2O3 stable phase is formed at 1000 °C. At the highest temperature (1100 °C), continuous and relatively smooth alumina layer mainly contains fine crystallites of α-Al2O3. The initial lamellar structure and phase inhomogeneity in as-HIPed Fe3Al samples are supposed to be the main factors that determine observed peculiarities after Fe3Al oxidation at 900 °C and 1000 °C.  相似文献   

17.
Ni 3Al and Ni3Al-0.1B, with and without additions of about 2% Ti, Zr, or Hf were subjected to a thermal cycling oxidation test in pure flowing oxygen at atmospheric pressure at temperatures cycled between 400 and 1300 K. The scales formed on Ni3Al and Ni3Al-0.1B spalled repeatedly, resulting in a considerable mass loss of the specimen. The Ti addition to Ni3Al led to a repeated scale spollation, whereas Ti added to Ni3Al-0.1B resulted in a very adherent scale, although the oxidation kinetics were linear and the formation of deeply penetrating Al2O3 along the alloy grain boundaries took place. The scales were very adherent on alloys containing Zr and Hf. This was attributed to the so-called keying mechanism, because uneven penetration of Al2O3 into the alloy took place, leading to irregularly shaped scale/alloy interfaces. ZrO2 and HfO2 particles were incorporated into the Al2O3 layer and protrusions, and some of them were formed ahead of the Al2O3. The shape of these particles was not stringerlike as found with other alloys. The Ti, Zr, and Hf additions tended to decrease the density of voids formed at the scale/alloy interface, but the extent of the change seems to be insufficient to support the vacancy-sink mechanism. The Hf addition was found to be most effective in forming a protective scale.  相似文献   

18.
Perez  P.  Gonzalez-Carrasco  J. L.  Adeva  P. 《Oxidation of Metals》1998,49(5-6):485-507
The influence of particle size on the oxidationbehavior of Ni3Al prepared by powdermetallurgy (PM) was investigated in the temperaturerange of 535 to 1020°C for exposures up to 200 hr.Four alloys were obtained, each one processed with a differentpowder particle size fraction (<25, 25-50, 50-100,and 100-200 m). For temperatures below 730°C,the scale consists of an outer NiO layer, a thindiscontinuous intermediate nickel layer, and an internaloxidation zone. The lowest oxidation rate corresponds tothe material with the smallest particle size. Thisresults from its higher grain-boundary density; the boundaries act as easy-diffusion paths foraluminum leading to the rapid formation of a continuousinner alumina layer. At temperatures above 730°C, athree layered scale is observed consisting of an outer NiO layer, an intermediate layer that,depending on temperature, consisted of a mixture ofnickel and aluminum oxides orNiAl2O4, and an inner layer ofAl2O3, which accounts for thehigher oxidation resistance. The oxidation attack is characterized byintrusions of the scale into the alloy, the intrusionnumber increasing as the particle size decreases. It isassumed that oxide particles and impurities present at the original particle boundaries facilitatealumina growth along these regions. Thus, the lowestoxidation rate for the highest temperature rangecorresponds to the largest particle-sizematerial.  相似文献   

19.
The corrosion behavior of seven Ni-Mo-Al alloys was investigated over the temperature range of 600–950°C in a mixed-gas atmosphere of H 2/H 2O/H 2 S. The parabolic law was followed at low temperatures, while linear kinetics were generally observed at higher temperatures. At a fixed Mo content, the transition from parabolic to linear kinetics shifted to higher temperature with increasing Al concentration. Double-layered scales generally formed on alloys having a low Al content, consisting of an outer layer of nickel sulfide and a complex inner scale. The thickness of the outer scale and the inner scale decreased as the Al content increased. The outer scale became porous and discontinuous with increasing Al content and temperature. Al 2 O 3 was detected in the scales of all alloys corroded at higher temperatures ( 800°C), even though the amount of Al 2 O 3 was very small in some cases. The decrease in corrosion rate with increasing Al content may be attributed to the formation of Al 2 O 3,Al 0.55 Mo 2 S 4,and Al 2 S 3 in the inner scale.  相似文献   

20.
Chen  R. Y.  Young  D. J.  Blairs  S. 《Oxidation of Metals》2000,54(1-2):103-120
The corrosion behavior of Fe–22Mo–10Al (a/o, atom %),Fe–20.5Mo–15.7Al, and Fe–10Mo–19Al was examined inflowing H2/H2S gases of 4 Pa sulfur partial pressureat 900°C. Al2O3 was stable on all the alloys inthe atmospheres investigated. Fe–22Mo–10Al andFe–20.5Mo–15.7Al reacted slowly, following the parabolic ratelaw. Multilayered reaction products were formed on these alloys and it isuncertain which layer(s) provided the protection. Fe–10Mo–19Alreacted even more slowly, exhibiting two-stage parabolic kinetics. Duringthe early stage of this alloy's reaction, a preferential reaction zone,consisting of an oxide mixture, possibly Al2O3+FeAl2O4,and nonreacting Fe3Mo2, provided the protection. Duringthe later reaction stage, the formation of a continuous, externalAl2O3 layer further decreased the alloy reaction rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号