首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 71 毫秒
1.
将轻质、三维多孔且亲锂的泡沫铝用作锂(Li)金属负极骨架,通过简单的机械挤压方法,将泡沫铝与金属 Li复合,制得Al@Li复合负极。泡沫铝自身的高亲锂性,能够为Li金属成核提供丰富且均匀的活性位点,诱导Li在泡沫铝内部的快速成核和均匀电沉积。同时,泡沫铝的三维多孔结构,可以容纳Li金属负极在充放电过程中的巨大体积应变,降低局部电流密度,从而有效抑制Li枝晶的生长。因此,与纯Li金属负极相比,所获得的Al@Li复合负极在对称电池和LiFePO4||Al@Li半电池中,均表现出了更加优异的循环稳定性。  相似文献   

2.
将轻质、三维多孔且亲锂的泡沫铝用作锂(Li)金属负极骨架,通过简单的机械挤压方法,将泡沫铝与金属Li复合,制得Al@Li复合负极。泡沫铝自身的高亲锂性,能够为Li金属成核提供丰富且均匀的活性位点,诱导Li在泡沫铝内部的快速成核和均匀电沉积。同时,泡沫铝的三维多孔结构,可以容纳Li金属负极在充放电过程中的巨大体积应变,降低局部电流密度,从而有效抑制Li枝晶的生长。因此,与纯Li金属负极相比,所获得的Al@Li复合负极在对称电池和LiFePO4||Al@Li半电池中,均表现出了更加优异的循环稳定性。  相似文献   

3.
锂金属作为下一代高能量密度电池的理想负极材料受到研究人员广泛关注。然而,锂枝晶生长引起的安全隐患和循环寿命短等问题严重影响了锂金属电池的实用化进程。本文以电化学现象和理论为依据,从浓差极化角度详细分析锂金属电沉积过程中枝晶生长、死锂形成和全电池失效机制,并对目前研究较多的多孔宿主电极中的浓差极化及枝晶抑制进行分析,提出锂金属界面浓差电池现象。本文得到的结论为研究人员更深入地探究锂金属保护策略提供了理论依据。  相似文献   

4.
随着电化学储能市场的迅猛发展, 当前商用锂离子电池难以满足人们对高能量密度储能器件的需求. 锂金属具有高比容量和低氧化还原电位等优点, 被认为是下一代二次电池的理想负极材料. 然而, 锂金属负极在充放电过程中会出现体积变化大、 枝晶生长、 界面不稳定等问题, 严重阻碍了其在二次电池中的实际应用. 三维多孔材料具有骨架/空间互穿网络结构、 比表面积大、 孔隙发达和机械性能好等物理特性, 用作金属锂负极的集流体, 在锂沉积/溶解过程中可以起到降低局部有效电流密度、 均匀电场分布和降低锂离子浓度梯度的作用, 有望实现锂的均匀成核和无枝晶沉积, 同时抑制了电极的体积膨胀. 尽管有关三维集流体的研究报道不断出现, 但综合系统评价现有各种三维集流体体系的工作鲜见报道. 本文聚焦锂金属负极三维集流体的构建及应用研究进展, 首先分析了三维集流体抑制锂枝晶生长的基本原理及局限性, 继而重点关注了三维集流体的结构调控、 表面改性和功能化等应对策略对锂成核、 沉积过程的影响, 并对不同材质三维集流体的优缺点进行了归纳总结. 最后, 面向实用化, 分析并展望了三维集流体应用于锂金属电池的发展前景.  相似文献   

5.
Mg二次电池正极材料Cu2Mo6S8的合成与表征   总被引:1,自引:0,他引:1  
采用CuS.H2O、MoS2、Mo为原料,用熔盐法(KCl为熔盐)合成了谢弗雷尔相的Cu2Mo6S8正极材料,并用XRD,SEM,循环伏安测试,充放电测试对材料的结构和电化学性能进行研究。XRD结果表明本Cu2Mo6S8正极材料属于R3空间群,具有良好的晶型。电化学测试表明,当材料在电压0.2~2 V范围内进行充放电时,其放电比容量在90 mAh.g-1左右,循环稳定性和可逆性均良好。该材料的充放电曲线中在1.2 V和1.9 V分别有还原峰,0.7 V和1.0 V分别有氧化峰,与伏安曲线相对应。  相似文献   

6.
利用碳热还原法成功制备了碳包覆Li3V2(PO4)3正极材料。X射线衍射研究表明材料具有纯相单斜结构。高分辨透射电子显微镜观察到材料表面存在5~10 nm的包覆碳层。碳包覆Li3V2(PO4)3材料在3.0~4.3 V电压区间内可提供120 mA.h/g(C/4倍率)、115 mA.h/g(1C倍率)和110 mA.h/g(2C倍率)的可逆容量,并且在循环300次后容量保持率超过97%,显示出良好的应用前景。该材料在充放电循环初期经历了不可逆容量损失。高分辨透射电子显微镜研究表明,该不可逆容量损失来源于材料表面生成的固体电解质中间相(SEI膜),红外光谱分析表明,SEI膜的成份主要包括ROCO2Li和RCO2Li等有机物,以及Li2CO3、LixPFy和LixPOyFz等无机物。表面SEI膜经历初期电化学循环后趋于稳定,从而保证碳包覆Li3V2(PO4)3正极材料优良的电化学性能。  相似文献   

7.
双向脉冲充电法对锂枝晶生成的抑制   总被引:1,自引:0,他引:1  
采用双向脉冲电流充电方法取代传统的直流电充电方法, 研究了金属锂电极在有机电解液1 mol•L−1 LiPF6/碳酸乙烯酯(EC):二甲基碳酸脂(DMC)(1:1, V/V)中的充电过程. 锂电极的表面变化通过原位显微镜观测和交流阻抗谱进行检测. 原位显微镜观测结果显示, 在直流充电时锂电极上明显地出现了枝晶, 而在双向脉冲充电时, 枝晶的产生和生长受到了抑制. 交流阻抗谱结果显示在双向脉冲充电下, 锂电极的表面积增长较直流充电时缓慢. 这种抑制枝晶生长, 稳定锂沉积的新充电方法有望用于锂阳极二次电池.  相似文献   

8.
利用太阳能将CO2还原为具有高能量附加值的含碳气相或液相燃料为解决能源枯竭和气候异常等问题提供一个有前景的方案.然而,由于CO2光还原过程是上坡反应且具有高的反应能垒,目前光催化CO2还原的转化效率仍然很低.为实现高效率CO2光还原,半导体光催化剂需要有宽的光吸收范围、强的氧化还原能力和丰富的活性位点.但同时满足上述条件的光催化剂有限.在半导体中,BiOI具有1.8 eV的窄带隙,可以响应波长大于600 nm的可见光且具有很强的还原能力,因此广泛应用于CO2光还原、全水分解和重金属离子还原等领域.此外,BiOI是一种典型的二维材料,交替的[Bi2O2]2+和I-离子层会导致不同层间产生固有极化和内建电场(IEF).因此,BiOI可以凭借内在的IEF有效地实现电荷分离.然而,CO2光还原还需要质子参与,而质子通常来自水氧化.但BiOI价带的氧化能力不足,影响CO...  相似文献   

9.
李国然  孙帅  高学平 《电化学》2012,(2):135-139
以金红石型TiO2和NaOH为原料,由水热反应制备Na2Ti6O13纳米管.然后,在含有0.1 mol.L-1NaOH的葡萄糖水溶液中反应4 h制得碳包覆的Na2Ti6O13纳米管.X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析表明,该碳包覆Na2Ti6O13纳米管外径约14~19 nm,内径约2~5 nm,长度为数百纳米,有一层厚度约为2 nm的碳层包覆在纳米管外壁.以其作为锂离子电池负极材料,恒电流充放电测试表明,在50 mA.g-1电流密度下首周可逆容量达到161 mAh.g-1,循环100周后容量保持在147 mAh.g-1.相比于Na2Ti6O13纳米管,提高了20%以上.电流密度升至1600 mA.g-1充放电,碳包覆Na2Ti6O13纳米管可逆容量仍有70 mAh.g-1左右,远高于Na2Ti6O13纳米管,表现出良好的倍率性能.  相似文献   

10.
Li2.6Co0.4N材料的制备及其锂离子嵌入热力学和动力学研究   总被引:1,自引:0,他引:1  
在精制氨气气氛中,以纯相氮化锂和金属钴粉为原料,制备了新型锂电池负极材料Li2.6Co0.4N。利用XRD测定了其结构;采用库仑滴定方法对其锂离子的嵌入行为进行研究。结果表明,Li2.6Co0.4N样品具有六方晶系结构,其晶胞参数为a=0.500nm,c=0.387nm;比容量为829mA·h·g-1,锂离子最大嵌入量为1.7215,室温下锂离子化学扩散系数为4.6×10-10~2.65×10-9cm2·s-1,嵌入自由能为-223.98kJ·mol-1,还获得一系列其它热力学和动力学参数。  相似文献   

11.
对高比能量锂离子电池需求的不断增加激发了锂金属负极的应用研究。锂金属具有高放电比容量(3860 mAh·g?1),低电极电位(?3.04 V),是锂离子电池的理想负极材料。然而,锂金属在循环过程中会形成不稳定的固态电解质(SEI)膜,而且会生成枝晶,枝晶的生长会引发电池短路等安全问题,极大地阻碍了其应用。理想的SEI膜应具有良好的锂离子传导性、表面电子绝缘性和机械强度,可调控锂离子在表面均匀沉积,促进离子传输,抑制枝晶生长,因此构筑功能化SEI膜是解决锂金属负极所面临挑战的一项有效策略。本综述以锂金属枝晶形成和生长的机理为出发点,分析总结SEI膜的构建策略、不同组成SEI膜的结构和功能特性及其对锂金属负极性能的影响,并对锂金属实用化面临的挑战及未来发展方向进行了展望。  相似文献   

12.
随着电动汽车和便携式电子产品的快速发展, 人们对于高比能二次电池的需求越来越迫切. 锂金属以其极高的理论比容量和极低的电极电势被视为下一代高比能电池理想负极材料之一. 但是, 锂枝晶的生长及体积膨胀等问题限制了金属锂负极的实际应用. 在金属锂负极中引入三维骨架可以有效抑制锂枝晶生长, 缓解体积膨胀. 其中亲锂骨架可以降低锂的形核能垒, 诱导锂的均匀成核, 更加有效地调控锂沉积行为. 本文结合国内外的研究进展总结了锂金属负极中亲锂骨架的研究成果. 根据亲锂材料的不同对亲锂骨架进行了分类, 总结了各类亲锂骨架在调控锂沉积行为和提高电池性能方面取得的成果, 并对其今后的研究和发展进行了展望.  相似文献   

13.
锂金属由于其高比容量和低电极电势等优点被认为是下一代高比能量电池体系中最有潜力的负极材料。然而由于锂金属的高活性,锂负极在循环过程中会产生大量的枝晶,导致SEI(solid-electrolyte interphase)破裂,并且枝晶增加了电极与电解液的接触面积,使得副反应进一步增加。此外,脱落的枝晶形成死锂,从而降低电池的充放电库仑效率。并且不可控的锂枝晶持续生长会刺穿隔膜引发电池短路,伴随着电池热失控等安全问题。本综述基于锂负极存在的主要挑战,结合理解锂枝晶的成核生长模型等机理总结并深度分析近些年来在液态和固态电解质体系中改善锂金属负极的主要策略及其作用机理,为促进高比能量锂金属电池的应用提供借鉴参考作用。  相似文献   

14.
关俊  李念武  于乐 《物理化学学报》2021,37(2):2009011-0
金属锂具有极高的比容量(3860 mAh·g?1)和最低的电化学反应电位(相对标准氢电位为?3.040 V),被认为是高能量密度二次电池最具潜力的负极材料。然而金属锂负极界面稳定性差、不可控的枝晶生长、沉积/剥离过程中巨大的体积变化等严重阻碍了金属锂负极的商业化应用。在金属锂表面构建一层物理化学性质稳定的人工界面保护层被认为是解决金属锂负极界面不稳定和枝晶生长,缓解体积膨胀带来的界面波动等一系列问题的有效手段。本综述依据界面传导性质,从离子导通而电子绝缘的人工固态电解质界面(SEI)层、离子/电子混合传导界面、纳米界面钝化层三个部分对人工界面保护层进行了归纳总结。分析了人工界面保护层的物质结构与性能之间的构效关系,探讨了如何提高人工界面保护层的物理化学稳定性、界面离子输运、界面强度与柔韧性、界面兼容性等。最后,指出用于金属锂负极的人工界面保护层目前面临的主要挑战,并对其未来的发展进行了展望。  相似文献   

15.
Utilization of lithium (Li) metal anode is highly desirable for achieving high energy density batteries. Even so, the unavoidable features of Li dendritic growth and inactive Li are still the main factors that hinder its practical application. During plating and stripping, the solid electrolyte interphase (SEI) layer can provide passivation, playing an important role in preventing direct contact between the electrolyte and the electrode in Li metal batteries. Because of complexities of the electrolyte chemical and electrochemical reactions, the various formation mechanisms for the SEI are still not well understood. What we do know is that a strategic artificial SEI achieved through additives electrolyte can suppress the Li dendrites. Otherwise, the dendrites keep generating an abundance of irreversible Li, resulting in severe capacity loss, internal short-circuiting, and cell failure. In this minireview, we focus on the phenomenon of dendritic Li-growth and provide a brief overview of SEI formation. We finally provide some clear insights and perspectives toward practical application of Li metal batteries.  相似文献   

16.
锂金属负极具有极高的理论比容量和最低的还原电位,因此锂金属电池被认为是最具潜力的高比能储能器件之一.然而,充放电过程中不受控制的枝晶生长、不稳定的界面反应与巨大的体积变化导致锂金属负极库伦效率低与循环稳定性差,同时枝晶刺穿隔膜也会带来安全隐患,这些问题极大地制约着锂金属电池的实际应用.多孔聚合物由于比表面积大、密度低、...  相似文献   

17.
金属锂由于其高的比容量,低的电极电势和轻质等特点被认为是下一代高能量密度锂金属二次电池负极材料的最佳选择。然而,充放电循环中不均匀的锂沉积会导致严重的体积变化和大量的锂枝晶形成,从而影响了电池的库伦效率甚至会带来严重的安全隐患。为此,本文设计了一种亲锂的三维二硫化锡@碳纤维布复合基底材料,并作为集流体将其应用于金属锂电池上。一者,高比表面积的三维碳纤维骨架可以适应充放电过程中的体积变化并且有效地降低局部电流密度,从而确保锂的均匀沉积。二者,表面修饰的SnS2层在锂沉积过程中可以形成Li-Sn合金界面层,诱导锂的沉积并降低过电势。最终,实验结果表明:使用所制备的复合集流体与金属锂搭配组成的半电池可以在5 mA·cm-2的高电流密度下以>98%的库伦效率稳定循环100周以上。此外,在承载10 mAh·cm-2的金属锂后,复合的锂负极无论是在对称电池还是与磷酸铁锂组装成的实际电池中,均可以在高的电流密度下实现稳定的循环。我们相信这一复合的集流体构建策略对于设计安全稳定的锂金属电池或器件具有重要意义。  相似文献   

18.
The aprotic Li-O2 battery has attracted considerable interest in recent years because of its high theoretical specific energy that is far greater than that achievable with state-of-the-art Li-ion technologies. To date, most Li-O2 studies, based on a cell configuration with a Li metal anode, aprotic Li+ electrolyte and porous O2 cathode, have focused on O2 reactions at the cathode. However, these reactions might be complicated by the use of Li metal anode. This is because both the electrolyte and O2 (from cathode) can react with the Li metal and some parasitic products could cross over to the cathode and interfere with the O2 reactions occurring therein. In addition, the possibility of dendrite formation on the Li anode, during its multiple plating/stripping cycles, raises serious safety concerns that impede the realization of practical Li-O2 cells. Therefore, solutions to these issues are urgently needed to achieve a reversible and safety Li anode. This review summarizes recent advances in this field and strategies for achieving high performance Li anode for use in aprotic Li-O2 batteries. Topics include alternative counter/reference electrodes, electrolytes and additives, composite protection layers and separators, and advanced experimental techniques for studying the Li anode|electrolyte interface. Future developments in relation to Li anode for aprotic Li-O2 batteries are also discussed.  相似文献   

19.
锂金属是具有高能量密度的负极材料,是下一代高能量密度电池研究的重点。在锂金属负极的改性研究中,锂对称电池是最常用的测试对象,但判断其短路的依据尚未统一,因此存在部分对短路数据的解析错误。本文利用原位电池对锂沉积过程中由于枝晶生长导致的短路现象进行了描述,对锂金属对称电池在充放电过程中的短路现象进行了分类和讨论。通过区分硬短路、软短路及电池活化过程,提出了判断锂对称电池中枝晶生长及电池短路的依据,为判定锂金属负极改性方法的有效性提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号