首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
小江西支断裂的滑动速率与强震重复周期   总被引:7,自引:3,他引:7       下载免费PDF全文
本文通过对各种断错地质地貌现象及被错体年龄的分析,估算出小江西支断裂在第四纪、晚更新世及全新世以来的滑动速率分别为6.7毫米/年、7.0毫米/年及6.4毫水/年。在此基础上,结合历史地震及古地震活动讨论了强震的重复周期和断裂的活动特征,结果表明小江西支断裂的活动以重复错动发生强烈地震为主要特征,强震在断裂带上同一地段的平均重复周期为900年左右,沿整个断裂带的重复周期大于330年  相似文献   

2.
中卫—同心断裂带西段位于宁夏中卫县甘塘附近,在近期的某重大工程场地的区域地震地质野外调查中,经过断层陡坎和断错冲沟等微地貌测量、槽探揭露、年代样品的采集和测定,获得了断层最新活动时代、活动方式、垂直和水平位移量等资料,表明了它在晚第四纪以来的活动特征。  相似文献   

3.
More attention has been paid to the late Quaternary activity of the boundary fault of the Sichuan-Yunnan block in eastern Tibet. The Lijiang-Xiaojinhe Fault (LXF) locates along the boundary of the northwest Sichuan and central Yunnan sub-blocks in the Sichuan-Yunnan block. Clear displaced landforms show that the fault has undergone strong late-Quaternary activity. However there is no surface-rupturing earthquake occurring on the LXF in the historical record. The LXF crosses the city of Lijiang, one of the most important tourist cities in Southwest China. The rupture behavior on this fault remains unclear and it is hard to assess its seismic hazard in the future. In this study, on the base of the interpretation of high-resolution satellite imagery, we chose the middle segment of the LXF and dug three trenches at Muzhuda, Hongxing, and Gantangzi sites to constrain the ages of paleoearthquakes combined with radiocarbon dating and OxCal modeling. The Muzhuda trench shows that at least three events occurred on the middle segment of the LXF at 7 940~6 540a BP, 4 740~4 050a BP and 1 830~420a BP, respectively. The Hongxing trench indicates that the LXF underwent two events at 5 120~3 200a BP and 2 100~1 220a BP. The Gantangzi trench reveals at least three paleoearthquakes at 44 980~17 660a BP, 7 210~3 810a BP and 2 540~1 540a BP, respectively. The events in the Gantangzi trench might be incomplete because of stratigraphic gap. These three trenches indicate that three events occurred on the middle segment of the LXF in the Holocene at 7 940~7 210a BP, 4 740~4 050a BP and 1 830~1 540a BP, respectively. Large earthquakes on the middle segment of the LXF appear to fit the quasi-periodic model with the mean recurrence interval of~3 000a and the estimated magnitude 7.5. Given the strong late-Quaternary activity of the middle segment of the LXF and a long elapsed time, we propose that the middle segment of the LXF might have a high seismic hazard potential in the near future.  相似文献   

4.
小江断裂带中段晚新生代构造盆地演化阶段   总被引:5,自引:0,他引:5  
沈军  俞维贤 《地震研究》1998,21(1):58-64
小江断裂带中段的盆地可以划分三个阶段,即N2-Q1,Q2末-Q3初和Q3-Q4。这些盆地受小江断裂带左旋走滑运动控制。  相似文献   

5.
小江断裂带第四纪晚期左旋走滑速率及其构造意义   总被引:6,自引:2,他引:6       下载免费PDF全文
位于中国西南的小江 (Xiaojiang)断裂带作为康定 (Kangding)断裂带的南段 ,在青藏块体向SE方向挤出的过程中起着重要的作用。根据断错地貌以及这些断错地貌14 C年代或热释光年代 ,推算了小江断裂带第四纪晚期的左旋走滑速率。小江断裂带可以分为 3段 ,其中段由平行的两条断层组成。西支断层和东支断层的左旋走滑速率分别为 7.0~ 9.0mm/ yr和 6 .0~ 7.5mm/yr。简单相加 ,就可以推算出小江 (Xiaojiang)断裂带总的左旋走滑速率为 13 0~ 16 5mm/ yr,与康定断裂带北段的鲜水河 (Xianshuihe)断层的走滑速率大致相当 ,约等于康定 (Kangding)断裂带中段的安宁河 (Anninghe)断层及则木河 (Zemuhe)断层的两倍。这个结果可能暗示了在康定断裂带中段 ,可能存在着其他断层以解消另外一半的滑动速率。最有可能的断层是位于康定断裂带中段以东几十公里的普雄河 -布拖 (Puxionghe Butuo)断层  相似文献   

6.
郯庐断裂带莒县胡家孟晏地震破裂带的发现   总被引:1,自引:3,他引:1       下载免费PDF全文
郯庐断裂带是中国东部最主要的一条活动断裂带。在该断裂带中部,沂沭断裂东地堑的潍坊—嘉山段中发育了1条长360km的全新世活动断裂带(F5),在该全新世断裂带的北段和中段分别发生了公元70年的安丘地震和公元1668年的郯城地震。2003年底我们考察沭河断裂带时,在莒县境内发现了1条长约7km的地震破裂带,作为活动断层应该归属于F5断裂带,但其是一条独立的地震破裂段还是归属于1668年郯城8.5级地震破裂带有待于进一步的研究。尽管如此,探槽揭示出的上覆未经破坏的地层的14C年代表明,该破裂带在(2140±190)aBP以来没有过活动,因此我们认为其作为1条独立破裂段的可能性较大  相似文献   

7.
The Xianshuihe Fault, the boundary of Bayan Har active tectonic block and Sichuan-Yunnan active tectonic block, is one of the most active fault zones in the world. In the past nearly 300 years, 9 historical earthquakes of magnitude ≥ 7 have been recorded. Since 2008, several catastrophic earthquakes, such as Wenchuan MS8 earthquake, Yushu MS7.1 earthquake and Lushan MS7 earthquake, have occurred on the other Bayan Har block boundary fault zones. However, only the Kangding MS6.3 earthquake in 2014 was documented on the Xianshuihe Fault. Thus, the study of surface deformation and rupture behavior of large earthquakes in the late Quaternary on the Xianshuihe Fault is of fundamental importance for understanding the future seismic risk of this fault, and even the entire western Sichuan region. On the basis of the former work, combined with our detailed geomorphic and geological survey, we excavated a combined trench on the Qianning segment of Xianshuihe fault zone which has a long elapse time. Charcoal and woods in the trench are abundant. 30 samples were dated to constrain the ages of the paleoseismic events. Five events were identified in the past 9  000 years, whose ages are:8070-6395 BC, 5445-5125 BC, 4355-4180 BC, 625-1240 AD and the Qianning earthquake in 1893. The large earthquake recurrence behavior on this segment does not follow the characteristic earthquake recurrence model. The recurrence interval is 1000~2000 years in early period and in turn there is a quiet period of about 5 000 years after 4355-4180 BC event. Then it enters the active period again. Two earthquakes with surface rupture occurred in the past 1000 years and the latest two earthquakes may have lower magnitude. The left-lateral coseismic displacement of the 1893 Qianning earthquake is about 2.9m.  相似文献   

8.
Daliangshan fault zone (DFZ) constitutes an indispensable part of Xianshuihe-Xiaojiang fault system which is one of the main large continental strong earthquake faults in China.Puxiong Fault,the east branch of middle segment of DFZ,is the longest secondary fault.Its paleoseismic activity plays an important role in evaluating regional seismic activity level and building countermeasures of preventing and reducing the earthquake damage.The active fault mapping as well as the study of paleoseismological trench in recent years illustrates that Puxiong Fault is a slightly west-dipping high-angle left-lateral strike-slip fault with strong activity since late Pleistocene.Two trenches excavated across this fault reveal 2 and 3 paleoearthquakes that ruptured the fault at 8206 BC-1172 AD,1084-1549 AD,and 17434-7557 BC,1577-959 BC and 927-1360 AD,respectively.The OxCal model combining the results from both trenches and the another one in previous study across the fault with the historical earthquake record yields the elapsed time of~0.7ka of the latest paleoearthquake event,and the interval time is~2.3ka between the last two events.In the model,the penultimate event is considered to be recorded in all trenches.As all the three trenches are located at north part of the Puxiong Fault whose strike is apparently different from the south part,the~57km long north secondary segment is supposed to be the seismogenic structure of the paleoearthquake.According to the empirical scaling laws between magnitude and rupture length,the magnitude of the surface ruptured paleoearthquake is estimated to be more than M7 with the coseismic displacement~3.5m.However,the difference between the time of the paleoearthquake events on the middle and south segments of DFZ illustrates their independence as earthquake fracture units,and furthermore,the lower connectivity and the new generation of DFZ.  相似文献   

9.
The NE-trending Xinyi-Lianjiang fault zone is a tectonic belt, located in the interior of the Yunkai uplift in the west of Guangdong Province, clamping the Lianjiang synclinorium and consisting of the eastern branch and the western branch. The southwestern segment of the eastern branch of Xinyi-Lianjiang fault zone, about 34km long, extends from the north of Guanqiao, through Lianjiang, to the north of Hengshan. However, it is still unclear about whether the segment extends to Jiuzhoujiang alluvial plain or not, which is in the southwest of Hengshan. If it does, what is about its fault activity? According to ‘Catalogue of the Modern Earthquakes of China’, two moderately strong earthquakes with magnitude 6.0 and 6.5 struck the Lianjiang region in 1605 AD. So it is necessary to acquire the knowledge about the activity of the segment fault, which is probably the corresponding seismogenic structure of the two destructive earthquakes. And the study on the fault activity of the segment can boost the research on seismotectonics of moderately strong earthquakes in Southeast China. In order to obtain the understanding of the existence of the buried fault of the southwestern segment, shallow seismic exploration profiles and composite borehole sections have been conducted. The results indicate its existence. Two shallow seismic exploration profiles show that buried depth of the upper breakpoints and vertical throw of the buried fault are 60m and 4~7m(L5-1 and L5-2 segment, the Hengshan section), 85m and 5~8m(L5-3 segment), 73m and 3~5m(Tiantouzai section), respectively and all of them suggest the buried fault has offset the base of the Quaternary strata. Two composite borehole sections reveal that the depth of the upper breakpoints and vertical throws of the buried segment are about 66m and 7.5m(Hengshan section) and 75m and 5m(Tiantouzai section), respectively. The drilling geological section in Hengshan reveals that the width of the fault could be up to 27m. Chronology data of Quaternary strata in the two drilling sections, obtained by means of electron spin resonance(ESR), suggest that the latest activity age of the buried fault of the southwestern segment is from late of early Pleistocene(Tiantouzai section) to early stage of middle Pleistocene(Hengshan section). Slip rates, obtained by Hengshan section and Tiantouzai section, are 0.1mm/a and 0.013mm/a, respectively. As shown by the fault profile located in a bedrock exposed region in Shajing, there are at least two stages of fault gouge and near-horizontal striation on the fault surface, indicating that the latest activity of the southwestern segment is characterized by strike-slip movement. Chronology data suggest that the age of the gouge formed in the later stage is(348±49) ka.  相似文献   

10.
闻学泽 《地震地质》2000,22(3):239-249
依据多种资料分层次剖析了川西鲜水河 -安宁河 -则木河断裂带的地震破裂分段性及其原因 ,并将该断裂带划分为 12个特征地震破裂段。断裂带上持久性和非持久性的破裂边界各占约 ;持久性及重要的破裂边界可依据断裂几何结构及活动习性标志进行判定 ,它们均以局部体积变化的方式来终止破裂的扩展 ;非持久性的破裂边界则可依据地震破裂与复发行为、断裂现今活动习性空间差异、松驰障碍体与较小尺度几何障碍的复合体等进行判定 ,其位置可随时间变化。地震破裂时间间隔短的 ,相邻破裂的重叠量较小 ;时间间隔长的 ,相邻破裂的重叠量则较  相似文献   

11.
渭河断裂带古地震研究   总被引:3,自引:3,他引:3  
史料记载和涵洞路槽开挖表明,在距今9110a以来渭河断裂带窑店—张家湾段曾发生1次历史地震、3次古地震事件。其中历史地震即第Ⅳ期地震的发震时间在公元1487—1568年之间;事件Ⅰ为距今(9110±90)a,事件Ⅱ和事件Ⅲ距今时间不详。第Ⅰ,Ⅱ,Ⅲ期地震事件的同震垂直位移量分别为0.5,0.5,0.2m。涵洞路槽开挖也表明,渭河断裂窑店—张家湾段为全新世活动断裂  相似文献   

12.
The relationship between the latest activity of active fault and seismic events is of the utmost importance. The Tan-lu fault zone in eastern China is a major fault zone, of which the active characteristics of the segments in Jiangsu, Shandong and Anhui has been the focus of research. This study takes the Dahongshan segment of the Tanlu Fault in Sihong County as the main research area. We carried out a detailed geological survey and excavated two trenches across the steep slope on the southwest side of the Dahongshan. Each trench shows fault clearly. Combining the comparative analysis of previous work, we identified and cataloged the late Quaternary deformation events and prehistoric earthquake relics, and analyzed the activity stages and behavior of this segment. Fault gonge observed in the trench profiles shows that multiple earthquake events occurred in the fault. The faulting dislocated the Neogene sandstone, black gravel layer and gray clay layer. Brown clay layer is not broken. According to the relations of dislocated stratums, corresponding 14C and OSL samples were collected and dated. The result indicates that the Dahongshan segment of the Tanlu Fault has experienced strong earthquakes since the late Quaternary. Thrust fault, normal fault and strike-slip fault are found in the trenches. The microscopic analysis of slices from fault shows that there are many stick-creep events taking place in the area during the late Quaternary. Comprehensive analysis shows that there have been many paleoearthquakes in this region since the late Quaternary, the recent active time is the late Pleistocene, and the most recent earthquake event occurred in(12~2.5ka BP). The neotectonic activity is relatively weak in the Anhui segment(south of the Huaihe River)of Tanlu fault zone. There are difficulties in the study of late Quaternary activity. For example, uneven distribution of the Quaternary, complex geological structure, larger man-made transformation of surface and so on. The progressive research may be able to promote the study on the activity of the Anhui segment of Tanlu fault zone.  相似文献   

13.
It is well known that the slip rate of Kunlun Fault descends at the east segment, but little known about the Awancang Fault and its role in strain partitioning with Kunlun Fault. Whether the sub-strand(Awancang Fault) can rupture simultaneously with Kunlun Fault remains unknown. Based on field investigations, aerial-photo morphological analysis, topographic surveys and 14C dating of alluvial surfaces, we used displaced terrace risers to estimate geological slip rates along the Awancang Fault, which lies on the western margin of the Ruoergai Basin and the eastern edge of the Tibetan plateau, the results indicate that the slip rate is 3mm/a in the middle Holocene, similar to the reduced value of the Kunlun Fault. The fault consists of two segments with strike N50° W, located at distance about 16km, and converged to single stand to the SE direction. Our results demonstrate that the Awancang fault zone is predominantly left-lateral with a small amount of northeast-verging thrust component. The slip rates decrease sharply about 4mm/a from west to east between the intersection zone of the Awancang Fault and Kunlun Fault. Together with our previous trenching results on the Kunlun Fault, the comparison with slip rates at the Kunlun fault zone suggests that the Awancang fault zone has an important role in strain partitioning for east extension of Kunlun Fault in eastern Tibet. At the same time, the 15km long surface rupture zone of the southeast segment was found at the Awancang Fault. By dating the latest faulted geomorphologic surface, the last event may be since the 1766±54 Cal a BP. Through analysis of the trench, there are four paleoearthquake events identified recurring in situ on the Awancang Fault and the latest event is since (850±30)a BP. The slip rate of the Awancang Fault is almost equivalent to the descending value of the eastern part of the east Kunlun Fault, which can well explain the slip rate decreasing of the eastern part of the east Kunlun Fault(the Maqin-Maqu segment)and the characteristics of the structure dynamics of the eastern edge of the Tibet Plateau. The falling slip rate gradient of the eastern Kunlun Fault corresponds to the geometric characteristic. It is the Awancang Fault, the strand of the East Kunlun Fault that accommodates the strain distribution of the eastward extension of the east Kunlun Fault. This study is helpful to seismic hazard assessment and understanding the deformation mechanism in eastern Tibet.  相似文献   

14.
Nine earthquakes with M≥6 have stricken the northern segment of the Red River fault zone since the historical records, including the 1652 Midu M7 earthquake and the 1925 Dali M7 earthquake. However, there have been no earthquake records of M≥6 on the middle and southern segments of the Red River Fault, since 886 AD. Is the Red River fault zone, as a boundary fault, a fault zone where there will be not big earthquake in the future or a seismogenic structure for large earthquake with long recurrence intervals?This problem puzzles the geologists for a long time. Through indoor careful interpretation of high resolution remote sensing images, and in combination with detailed field geological and geomorphic survey, we found a series of fault troughs along the section of Gasha-Yaojie on the southern segment of the Red River fault zone, the length of the Gasha-Yaojie section is over ten kilometers. At the same time, paleoseismic information and radiocarbon dating result analysis on the multiple trenches show that there exists geological evidence of seismic activity during the Holocene in the southern segment of the Red River fault zone.  相似文献   

15.
The Xiangshan-Tianjingshan fault zone is an important part of the arc tectonic zone in northeastern Tibet, whose eastern segment is characterized by primarily left-lateral slip along with thrust component. In contrast, the fault movement property on the western segment of the Xiangshan-Tianjingshan fault zone is more complicated. According to the offset geomorphic features and cross sections revealed by the trenches and outcrops, the western segment is mainly a left-lateral strike-slip fault with normal component, and only accompanied with reverse component at specific positions. To determine the genetic mechanism of fault movement property on the western segment, we obtained three main factors based on the integrated analysis of fault geometry:(1)Step-overs:the left-stepping parallel faults in a sinistral shear zone create extensional step-overs and control the nearby and internal fault movement property; (2)terminal structures:they are conductive to stop rupture propagation and produce compressive deformation at the end of the fault trace; and(3)double bends:strike-slip faults have trace that bends such that slip between two adjacent blocks creates a compressive stress and thrust fault. Additionally, the Tianjingshan sub-block moves to SEE and creates an extensional stress at the end of the sub-block associated with normal faults. It shows that the Xiangshan-Tianjingshan fault zone has a complex evolution history, which is divided into two distinctive periods and characterized by laterally westward propagating.  相似文献   

16.
沈军  李莹甄 《地震地质》1998,20(4):41-331
将特征地震之间的次级地震产生的位移看作相对蠕滑速率,推导了相对蠕滑速率的估算公式,进而分析了次级地震对特征地震复发间隔的影响,从而可以更好地与古地震资料对比以得到可靠的特征地震重复间隔  相似文献   

17.
Cascade rupture events often occur along large strike-slip fault zone.The 1920 AD M 81/2 earthquake ruptured all 3 segments of the Haiyuan Fault,and the Salt Lake pull-apart basin is the boundary between the west and middle segment of the fault.The data of trenching and drilling reveal 7 events occurring since last stage of late Pleistocene,and the two youngest events are associated with the historical records of 1092 AD (possibly) and 1920 AD respectively.These events are all large earthquakes with magnitude M>8,and the recurrence of them is characterized by earthquake clusters alternating with a single event.Now it is in the latest cluster which may last about 1000 years.Comparison of the paleoseismic sequence of this study and previous results reveals that the cross-basin fault in the Salt Lake pull-apart basin does not always rupture when cascade rupture events occur along the Haiyuan Fault,and likely ruptures only when the magnitude of the events is large (maybe M>8).Though there are many advantages in paleoseismic study in pull-apart basin,we should avoid getting the paleoseismic history of major strike-slip fault zones only depending on the rupture records of inner faults in pull-apart basins with large scale (maybe a width more than 3km).  相似文献   

18.
The Longmenshan fault zone is located in eastern margin of Tibetan plateau and bounded on the east by Sichuan Basin, and tectonically the location is very important. It has a deep impact on the topography, geomorphology, geological structure and seismicity of southwestern China. It is primarily composed of multiple parallel thrust faults, namely, from northwest to southeast, the back-range, the central, the front-range and the piedmont hidden faults, respectively. The MS8.0 Wenchuan earthquake of 12th May 2008 ruptured the central and the front-range faults. But the earthquake didn't rupture the back-range fault. This shows that these two faults are both active in Holocene. But until now, we don't know exactly the activity of the back-range fault. The back-range fault consists of the Pingwu-Qingchuan Fault, the Wenchuan-Maoxian Fault and the Gengda-Longdong Fault. Through satellite image(Google Earth)interpretation, combining with field investigation, we preliminarily found out that five steps of alluvial platforms or terraces have been developed in Minjiang region along the Wenchuan-Maoxian Fault. T1 and T2 terraces are more continuous than T3, T4 and T5 terraces. Combining with the previous work, we discuss the formation ages of the terraces and conclude, analyze and summarize the existing researches about the terraces of Minjiang River. We constrain the ages of T1, T2, T3, T4 and T5 surfaces to 3~10ka BP,~20ka BP, 40~50ka BP, 60ka BP and 80ka BP, respectively. Combining with geomorphologic structural interpretation, measurements of the cross sections of the terraces by differential GPS and detailed site visits including terraces, gullies and other geologic landforms along the fault, we have reason to consider that the Wenchuan-Maoxian Fault was active between the formation age of T3 and T2 terrace, but inactive since T2 terrace formed. Its latest active period should be the middle and late time of late Pleistocene, and there is no activity since the Holocene. Combining with the knowledge that the central and the front-range faults are both Quaternary active faults, the activity of Longmenshan fault zone should have shifted to the central and the front-range faults which are closer to the basin, this indicates that the Longmenshan thrust belt fits the "Piggyback Type" to some extent.  相似文献   

19.
夏垫断裂带深部构造特征与第四纪活动性讨论   总被引:6,自引:3,他引:6  
利用重力、浅层地震和高密度电阻率法物探工作成果,由深及浅垂向上“接力拼接”的方式,结合钻探等手段,把夏垫断裂带分解为基岩断裂带和第四纪断裂带2个部分进行研究,结果表明:1)夏垫断裂带的基岩断裂带由主干断裂和次级断裂构成.其北段(马坊-西集一带)较窄,由2条主干断裂构成.其南段(西集-凤河营一带)较宽,由3条主干断裂构成.2)第四纪断裂带是基岩断裂带向上延伸的部分,是断裂带最新活动的直观表现,并受控于基岩断裂带.夏垫第四纪断裂带同样由主干和次级断裂构成,北段(马坊-西集一带)由2条主干断裂和分布于北端尾部次级断裂构成,与基岩断裂带一一对应关系较好.2条主干断裂产状差异较大,最新活动时间均为全新世.而南段(西集-凤河营一带)断裂分布不连续,很难分清主次断裂,同基岩断裂带的对应关系较差,推测为基岩断裂中夏垫断裂的活动.这些主、次级断裂产状均较为陡立,最新活动时间为晚更新世晚期-全新世早期.3)夏垫断裂带内上、下两盘全新世沉积底界垂向累积位错量为1.7 ~4.8m,晚、中、早更新世以来则分别为6 ~ 26m、26 ~ 167m和44 ~ 330m,其中最大累积位错量位于夏垫地区,向南、北逐渐减小.4)以张家湾断裂为界把夏垫断裂带划分为南、北2段.北段第四纪活动性强,中强震及微小地震时有发生,而南段第四纪活动性弱,仅发生微小地震.  相似文献   

20.
Bayan Hara Block is one of the most representative active blocks resulting from the lateral extrusion of Tibet Plateau since the Cenozoic. Its southern and northern boundary faults are characterized by typical strike-slip shear deformation. Its eastern boundary is blocked by the Yangze block and its horizontal movement is transformed into the vertical movement of the Longmen Shan tectonic belt, leading to the uplift of the Longmen Shan Mountains and forming a grand geomorphic barrier on the eastern margin of the Tibet Plateau. A series of large earthquakes occurred along the boundary faults of the Bayan Hara Block in the past twenty years, which have attracted attention of many scholars. At present, the related studies of active tectonics on Bayan Hara Block are mainly concentrated on the boundary faults, such as Yushu-Ganzi-Xianshuihe Fault, East Kunlun Fault and Longmen Shan Fault. However, there are also some large faults inside the block, which not only have late Quaternary activity, but also have tectonic conditions to produce strong earthquake. These faults divide the Bayan Hara Block into some secondary blocks, and may play important roles in the kinematics and dynamics mechanism of the Bayan Hara Block, or even the eastern margin of the Tibet Plateau. The Dari Fault is one of the left-lateral strike-slip faults in the Bayan Hara Block. The Dari Fault starts at the eastern pass of the Kunlun Mountains, extends eastward through the south of Yalazela, Yeniugou and Keshoutan, the fault strike turns to NNE direction at Angcanggou, then turns to NE direction again at Moba town, Qinghai Province, and the fault ends near Nanmuda town, Sichuan Province, with a total length of more than 500km. The fault has been considered to be a late Quaternary active fault and the 1947 M73/4 Dari earthquake was produced by its middle segment. But studies on the late Quaternary activity of the Dari Fault are still weak. The previous research mainly focused on the investigation of the surface rupture and damages of the 1947 M73/4 Dari earthquake. However, there were different opinions about the scale of the M73/4 earthquake surface rupture zone. Dai Hua-guang(1983)thought that the surface rupture of the earthquake was about 150km long, but Qinghai Earthquake Agency(1984)believed that the length of surface rupture zone was only 58km. Based on interpretation of high-resolution images and field investigations, in this paper, we studied the late Quaternary activity of the Dari Fault and the surface rupture zone of the 1947 Dari earthquake. Late Quaternary activity in the central segment of the Dari Fault is particularly significant. A series of linear tectonic landforms, such as fault trough valley, fault scarps, fault springs and gully offsets, etc. are developed along the Dari Fault. And the surface rupture zone of the 1947 Dari earthquake is still relatively well preserved. We conducted a follow-up field investigation for the surface rupture zone of the 1947 Dari earthquake and found that the surface rupture related to the Dari earthquake starts at Longgen village in Moba town, and ends near the northwest of the Yilonggounao in Jianshe town, with a length of about 70km. The surface rupture is primarily characterized by scarps, compressional ridges, pull-apart basins, landslides, cleavage, and the coseismic offset is about 2~4m determined by a series of offset gullies. The surface rupture zone extends to the northwest of Yilonggounao and becomes ambiguous. It is mainly characterized by a series of linear fault springs along the surface rupture zone. Therefore, we suggest that the surface rupture zone of the 1947 Dari earthquake ends at the northwest of Yilonggounao. In summary, the central segment of the Dari Fault can be characterized by strong late Quaternary activity, and the surface rupture zone of the 1947 Dari earthquake is about 70km long.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号