首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combination of structure-activity studies, kinetic analysis, X-ray crystallographic analysis, and modeling were employed in the design of a novel series of HIV-1 protease (HIV PR) inhibitors. The crystal structure of a complex of HIV PR with SRSS-2,5-bis[N-(tert-butyloxycarbonyl)amino]-3,4-dihydroxy-1, 6-diphenylhexane (1) delineated a crucial water-mediated hydrogen bond between the tert-butyloxy group of the inhibitor and the amide hydrogen of Asp29 of the enzyme. Achiral, nonpeptidic 2-hydroxyphenylacetamide and 3-hydroxybenzamide groups were modeled as novel P2/P2' ligands to replace the crystallographic water molecules and to provide direct interactions with the NH groups of the Asp29/129 residues. Indeed, the symmetry-based inhibitors 7 and 19, possessing 3-hydroxy and 3-aminobenzamide, respectively, as a P2/P2' ligand, were potent inhibitors of HIV PR. The benzamides were superior in potency to the phenylacetamides and have four fewer rotatable bonds. An X-ray crystal structure of the HIV PR/7 complex at 2.1 A resolution revealed an asymmetric mode of binding, in which the 3-hydroxy group of the benzamide ring makes the predicted interaction with the backbone NH of Asp29 on one side of the active site only. An unexpected hydrogen bond with the Gly148 carbonyl group, resulting from rotation of the aromatic ring out of the amide plane, was observed on the other side. The inhibitory potencies of the benzamide compounds were found to be sensitive to the nature and position of substituents on the benzamide ring, and can be rationalized on the basis of the structure of the HIV PR/7 complex. These results partly confirm our initial hypothesis and suggest that optimal inhibitor designs should satisfy a requirement for providing polar interactions with Asp29 NH, and should minimize the conformational entropy loss on binding by reducing the number of freely rotatable bonds in inhibitors.  相似文献   

2.
A series of 4-phenyl-1,4-dihydropyridines substituted at the ortho and meta positions of the phenyl ring with NO-donating furoxan moieties and their non-NO-releasing furazan analogues were synthesized and pharmacologically characterized. The vasodilator activities of these compounds were evaluated on rat aorta and expressed as EC50 values or as EC50iGC values when obtained in the presence of inhibitors of guanylate cyclase methylene blue (MB) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). Affinities to 1, 4-DHP receptors on Ca2+ channels, expressed as IC50 values, were determined through displacement experiments of [3H]nitrendipine on rat cortex homogenates. A linear correlation between IC50 and EC50 values was found for compounds unable to release NO. EC50calcd values for derivatives containing NO-donor moieties, expression of the Ca2+-blocking component of their vasodilator activity, were interpolated on this linear regression. They showed a good correspondence with EC50iGC values determined in the presence of soluble guanylate cyclase inhibitors. Analysis of EC50iGC/EC50 ratios provided a useful tool to distinguish well-balanced hybrids from derivatives biased toward Ca2+-blocking or NO-dependent vasodilator activity. A detrimental effect on affinity to the 1, 4-DHP receptor, due to substitution at the ortho and meta positions of the 4-phenyl ring, was observed. SAR to explain this effect is proposed.  相似文献   

3.
The design, synthesis, and molecular modeling studies of a novel series of azacyclic ureas, which are inhibitors of human immunodeficiency virus type 1 (HIV-1) protease that incorporate different ligands for the S1', S2, and S2' substrate-binding sites of HIV-1 protease are described. The synthesis of this series is highly flexible in the sense that the P1', P2, and P2' residues of the inhibitors can be changed independently. Molecular modeling studies on the phenyl ring of the P2 and P2' ligand suggested incorporation of hydrogen-bonding donor/acceptor groups at the 3' and 4-positions of the phenyl ring should increase binding potency. This led to the discovery of compound 7f (A-98881), which possesses high potency in the HIV-1 protease inhibition assay and the in vitro MT-4 cell culture assay (Ki = approximately 5 pM and EC50 = 0.002 microM). This compares well with the symmetrical cyclic urea 1 pioneered at DuPont Merck.  相似文献   

4.
Highly potent HIV-1 protease (HIVPR) inhibitors have been designed and synthesized by introducing bidentate hydrogen-bonding oxime and pyrazole groups at the meta-position of the phenyl ring on the P2/P2' substituents of cyclic ureas. Nonsymmetrical cyclic ureas incorporating 3(1H)-pyrazolylbenzyl as P2 and hydrophilic functionalities as P2' show potent protease inhibition and antiviral activities against HIV and have good oral bioavailabilities. The X-ray structure of HIVPR.10A complex confirms that the two pyrazole rings of 10A form bidentate hydrogen bonds with the side-chain oxygen (C=O) and backbone nitrogen (N-H) of Asp30/30' of HIVPR.  相似文献   

5.
A novel series of hydroxyethylamine-based inhibitors of HIV protease which contain a substituted pipecolinic amide were developed. After preliminary screening, a representative of this series, compound BILA 2185 BS, demonstrated an IC50 value of 3.3 nM in the enzymatic assay and an EC50 value of 2.0 nM in cell culture. The plasma profile and bioavailability values for BILA 2185 BS in the rat will be presented. The analyte was isolated from rat plasma using a liquid-liquid extraction procedure. The analytical technique used utilizes a high performance liquid chromatography system with photodiode array detector. The range of the standard curve was from 10 to 5000 nM. Recovery values averaged 72.4 +/- 8.6% (mean +/- S.D.). The limit of detection for BILA 2185 BS was 6-12 nM.  相似文献   

6.
A broad screening program previously identified phenprocoumon (1) as a small molecule template for inhibition of HIV protease. Subsequent modification of this lead through iterative cycles of structure-based design led to the activity enhancements of pyrone and dihydropyrone ring systems (II and V) and amide-based substitution (III). Incorporation of sulfonamide substitution within the dihydropyrone template provided a series of highly potent HIV protease inhibitors, with structure-activity relationships described in this paper. Crystallographic studies provided further information on important binding interactions responsible for high enzymatic binding. These studies culminated in compound VI, which inhibits HIV protease with a Ki value of 8 pM and shows an IC90 value of 100 nM in antiviral cell culture. Clinical trials of this compound (PNU-140690, Tipranavir) for treatment of HIV infection are currently underway.  相似文献   

7.
A series of novel spirocyclic ethers were designed to function as nonpeptidal P2-ligands for HIV-1 protease inhibitors. Incorporation of designed ligands in the (R)-(hydroxyethylamino)sulfonamide isostere afforded potent HIV protease inhibitors.  相似文献   

8.
A study on the use of derivatized carbohydrates as C2-symmetric HIV-1 protease inhibitors has been undertaken. L-Mannaric acid (6) was bis-O-benzylated at C-2 and C-5 and subsequently coupled with amino acids and amines to give C2-symmetric products based on C-terminal duplication. Potent HIV protease inhibitors, 28 Ki = 0.4 nM and 43 Ki = 0.2 nM, have been discovered, and two synthetic methodologies have been developed, one whereby these inhibitors can be prepared in just three chemical steps from commercially available materials. A remarkable increase in potency going from IC50 = 5000 nM (23) to IC50 = 15 nM (28) was observed upon exchanging -COOMe for -CONHMe in the inhibitor, resulting in the net addition of one hydrogen bond interaction between each of the two -NH- groups and the HIV protease backbone (Gly 48/148). The X-ray crystal structures of 43 and of 48 have been determined (Figures 5 and 6), revealing the binding mode of these inhibitors which will aid further design.  相似文献   

9.
A large series of isoquinoline derivatives was synthesised including derivatives of isoquinoline, isoquinolino[3,4-c]furazan, 1,2-dihydro-1-oxoisoquinoline, 6-oxopyrimido[1,2-d]isoquinoline, benzo[c][1,8]-naphthyridine, pyrazino[2,3-c]isoquinoline and benzimidazo[2,1-a]isoquinoline as well as further structurally related isoquinoline derivatives and pyrido-2,3-furazans. Representatives of all of these classes of isoquinolines are potent and selective inhibitors of the cyclic AMP-dependent protein kinase (PKA) catalytic subunit (cAK) from rat liver. The most effective cAK inhibitors are a series of 1,3-di-substituted and 1,3,4-tri-substituted isoquinolines (IC50 values 30-50 nM) (compounds A1, A2, A3, A4 and A5) and 2-ethylcarboxy-3-amino-5,6-dihydro-6-oxobenzo[c] [1,8]naphthyridine (E1) (IC50 0.08 microM). Compounds A1-A5 inhibit cAK in a fashion that is competitive with respect to ATP as substrate. The isoquinoline inhibitors A1-A5 are ineffective or very poor inhibitors of wheat embryo Ca(2+)-dependent protein kinase (CDPK) and rat brain Ca(2+)-dependent protein kinase C (PKC), chicken gizzard myosin light chain kinase (MLCK) and potato tuber cyclic nucleotide-binding phosphatase (Pase). E1 is a moderately effective inhibitor of CDPK and PKC (IC50 values 30 and 61 microM, respectively). The bisisoquinoline-1(2H)-one compound B7 inhibits cAK, CDPK, PKC and MLCK (IC50 values 8, 95, 24 and 7 microM, respectively) as does J1 [2-(p-bromophenyl)pyrrolo-[2,3-c]isoquinoline-5(4H)-one] (IC50 values 2, 50, 44 and 7 microM, respectively). The very potent isoquinoline-derived cAK inhibitors found here involve substitution of the N-containing isoquinoline ring system and these inhibitors show high specificity for cAK.  相似文献   

10.
Coadministration with the human immunodeficiency virus (HIV) protease inhibitor ritonavir was investigated as a method for enhancing the levels of other peptidomimetic HIV protease inhibitors in plasma. In rat and human liver microsomes, ritonavir potently inhibited the cytochrome P450 (CYP)-mediated metabolism of saquinavir, indinavir, nelfinavir, and VX-478. The structural features of ritonavir responsible for CYP binding and inhibition were examined. Coadministration of other protease inhibitors with ritonavir in rats and dogs produced elevated and sustained plasma drug levels 8 to 12 h after a single dose. Drug exposure in rats was elevated by 8- to 46-fold. A > 50-fold enhancement of the concentrations of saquinavir in plasma was observed in humans following a single codose of ritonavir (600 mg) and saquinavir (200 mg). These results indicate that ritonavir can favorably alter the pharmacokinetic profiles of other protease inhibitors. Combination regimens of ritonavir and other protease inhibitors may thus play a role in the treatment of HIV infection. Because of potentially substantial drug level increases, however, such combinations require further investigation to establish safe regimens for clinical use.  相似文献   

11.
In continuation of our previous work on eosinophilia inhibitors, we synthesized an additional series of inhibitors, which consisted of 5-amino-1-[(methylamino)thiocarbonyl]-1H-1,2,4-triazole derivatives and a newly developed series of 1,2,4-triazolo[1,5-a]-1,3,5-triazine derivatives. We evaluated their inhibitory activity on the airway eosinophilia model, which was induced by the intravenous (iv) injection of Sephadex particles. In the 1,2,4-triazole series with various substituents at the 3 position of the triazole ring such as 2-furyl, pyridyl, and phenoxy, none of derivatives had comparable activity to the previously reported compound GCC-AP0341, 5-amino-3-(4-chlorophenyl)-1-[(methylamino)thiocarbonyl]-1H-1,2, 4-triazole. In the triazolo[1,5-a]triazine series, 2-(4-chlorophenyl)-6-methyl-1,2,4-triazolo[1,5-a]-1,3, 5-triazine-7(6H)-thione (3h) was highly potent, and when given orally it had an ID50 value of 0.3 mg/kg, which is comparable to that of GCC-AP0341. The fact that the structure-activity relationship of these two series was quite similar suggests that a common substructure, such as the 1,2,4-triazole ring with a substituted phenyl ring at the 3 position and a thiocarbonyl moiety at the 1 position, could contribute to the activity. Our selected compound 3h was less active than GCC-AP0341 in the antigen-induced hyper-responsiveness model in guinea pigs; however, we plan to carry out further studies on eosinophil functions, especially on their activation, using our two compounds, 3h and GCC-AP0341.  相似文献   

12.
Two pairs of isomers (18Z)- (8), (18E)-29-methylidene-2,3-oxidohexanorsqualene (21), and (18Z)- (31), (18E)-29-methylidene-2,3-oxidosqualene (34), have been obtained in a fully stereospecific manner, as inhibitors of rat and yeast oxidosqualene cyclase. A new method for the synthesis of C22 squalene aldehyde 2,3-epoxide is reported, as well as that of other 19-modified 2,3-oxidosqualene analogues. We found that the activity is the opposite in the two series: the (E)-hexanormethylidene 21 and the (Z)-methylidene 31 are potent and irreversible inhibitors of oxidosqualene cyclase, while (Z)-hexanormethylidene 8 and (E)-methylidene 34 are almost completely inactive. Reduction of the 18,19-double bond, such as in 39, eliminates the activity, while removal of both of the 19-linked groups such as in heptanor derivative 40 greatly reduces inhibition of the enzyme. (E)-Hexanormethylidene 21 results the first irreversible inhibitor of the series toward the yeast enzyme.  相似文献   

13.
The inhibition of cysteine proteases is being studied as a strategy to combat parasitic diseases such as Chagas' disease, leishmaniasis, and malaria. Cruzain is the major cysteine protease of Trypanosoma cruzi, the etiologic agent of Chagas' disease. A crystal structure of cruzain, covalently inactivated by fluoromethyl ketone inhibitor 1 (Cbz-Phe-Ala-FMK), was used as a template to design potential inhibitors. Conformationally constrained gamma-lactams containing electrophilic aldehyde (12, 17, 18, 25, 26, and 29) or vinyl sulfone (43, 44, and 46) units were synthesized. Constrained lactam 26 had IC50 values of ca. 20 nM against the Leishmania major protease and ca. 50 nM versus falcipain, an important cysteine protease isolated from Plasmodium falciparum. However, all of the conformationally constrained inhibitors were weak inhibitors of cruzain, compared to unconstrained peptide aldehyde (e.g. 5 ) and vinyl sulfone inhibitors (e.g. 48, which proved to be an excellent inhibitor of cruzain with an apparent second order inhibition rate constant (k(inact)/Ki) of 634,000s(-1)M(-1). A significant reduction in activity was also observed with acyclic inhibitors 30 and 51 containing alpha-methyl phenylalanine residues at the P2 position. These data indicate that the pyrrolidinone ring, especially the quarternary center at P2, interferes with the normal substrate binding mode with cruzain, but not with falcipain or the leishmania protease.  相似文献   

14.
HTLV-I is an oncogenic retrovirus that is associated with adult T-cell leukemia. HTLV-I protease and HTLV-I protease fused to a deca-histidine containing leader peptide (His-protease) have been cloned, expressed, and purified. The refolded proteases were active and exhibited nearly identical enzymatic activities. To begin to characterize the specificity of HTLV-I, we measured protease cleavage of peptide substrates and inhibition by protease inhibitors. HTLV-I protease cleavage of a peptide representing the HTLV-I retroviral processing site P19/24 (APQVLPVMHPHG) yielded Km and kcat values of 470 microM and 0.184 s-1 while cleavage of a peptide representing the processing site P24/15 (KTKVLVVQPK) yielded Km and kcat values of 310 microM and 0.0060 s-1. When the P1' proline of P19/24 was replaced with p-nitro-phenylalanine (Nph), the ability of HTLV-I protease to cleave the substrate (APQVLNphVMHPL) was improved. Inhibition of HTLV-I protease and His-protease by a series of protease inhibitors was also tested. It was found that the Ki values for inhibition of HTLV-I protease and His-protease by a series of pepsin inhibitors ranged from 7 nM to 10 microM, while the Ki values of a series of HIV-1 protease inhibitors ranged from 6 nM to 127 microM. In comparison, the Ki values for inhibition of pepsin by the pepsin inhibitors ranged from 0.72 to 19.2 nM, and the Ki values for inhibition of HIV-1 protease by the HIV protease inhibitors ranged from 0.24 nM to 1.0 microM. The data suggested that the substrate binding site of HTLV-I protease is different from the substrate binding sites of pepsin and HIV-1 protease, and that currently employed HIV-1 protease inhibitors would not be effective for the treatment of HTLV-I infections.  相似文献   

15.
The SAR of a series of 2-(7-chromanyl)benzoic acids has been investigated with the aim of identifying potent and selective LTB4 receptor antagonists that maintain potency in complex biological fluids. We found optimal activity in derivatives with electron-withdrawing groups in the benzoic acid ring and with an unsubstituted C-3 benzyl group on the chromanol nucleus. While compounds containing a 3-(4-phenyl)benzyl chromanol substituent were potent LTB4 receptor antagonists, the increased lipophilicity imparted by the additional phenyl substituent led to decreased potency in the presence of plasma proteins. From among the potent compounds identified, CP-195543, the 5'-trifluoromethyl 3-benzyl chromanol, was selected for development.  相似文献   

16.
Abiraterone (17-(3-pyridyl)androsta-5,16-dien-3beta-ol, 1) is a potent inhibitor (IC50 4 nM for hydroxylase) of human cytochrome P45017alpha. To assist in studies of the role of the 16,17-double bond in its mechanism of action, the novel 17alpha-(4-pyridyl)androst-5-en-3beta-ol (5) and 17beta-(3-pyridyl)-16,17alpha-epoxy-5alpha-androst-3beta-ol (6) were synthesized. 3beta-Acetoxyetienic acid was converted in three steps into 5 via photolysis of the thiohydroxamic ester 8. Oxidation of an appropriate 16,17-unsaturated precursor (21) with CrO3-pyridine afforded the acetate (23) of 6. Inhibition of the enzyme by 1, the similarly potent 5,6-reduced analogue 19 (IC50 5 nM), and the 4, 16-dien-3-one 26 (IC50 3 nM) and by the less potent (IC50 13 nM) 3,5, 16-triene 25 is slow to occur but is enhanced by preincubation of the inhibitor with the enzyme. Inhibition following preincubation with these compounds is not lessened by dialysis for 24 h, implying irreversible binding to the enzyme. In contrast under these conditions the still potent (IC50 27 nM) 17alpha-(4-pyridyl)androst-5-en-3beta-ol (5) showed partial reversal after 5 h of dialysis and complete reversal of inhibition after 24 h. This behavior was also shown by the less potent 16,17-reduced 3-pyridyl compounds 3 and 24. Further, in contrast to the compounds (1, 19, 25, 26) with the 16,17-double bond, the inhibition of the enzymic reaction was not enhanced by preincubation either with 5 or with the 17beta-pyridyl analogues 3, 4, and 24 which also lack this structural feature. The results show that the 16,17-double bond is necessary for irreversible binding of these pyridyl steroids to cytochrome P45017alpha. However oxidation to an epoxide is probably not involved since epoxide 6 was only a moderately potent inhibitor (IC50 260 nM).  相似文献   

17.
A series of N,N'-disubstituted cyclic urea 3-benzamides has been synthesized and evaluated for HIV protease inhibition and antiviral activity. Some of these benzamides have been shown to be potent inhibitors of HIV protease with Ki < 0.050 nM and IC90 < 20 nM for viral replication and, as such, may be useful in the treatment of AIDS. The synthesis and quantitative structure-activity relationship for this benzamide series will be discussed.  相似文献   

18.
Monocyclic beta-lactams have been identified as potent and selective inhibitors of the human cytomegalovirus protease (HCMV) N(o). Two series of these inhibitors are described, a peptidyl series of compounds and non-peptidic molecules featuring lower molecular weights. The SAR work that lead to the discovery of these inhibitors, together with their synthesis is also disclosed.  相似文献   

19.
Several novel N-(4,5-diphenylthiazol-2-yl)-N'-aryl or alkyl (thio)ureas and N-(4,5-diphenylthiazol-2-yl)alkanamides were prepared as potential acyl-CoA: cholesterol O-acyltransferase (ACAT) inhibitors. Synthesis was accomplished by reaction of 2-amino-4,5-diphenylthiazole with the suitable isocyanate, isothiocyanate or acyl chloride. Some analogues without the 5-phenyl substituent or both the phenyl groups in 4 and 5 position of the thiazole ring were also prepared. Moreover, some bioisosters of the title compounds in which the thiazole ring was replaced by an imidazole were synthesized starting from the 2-amino-4,5-diphenyl-1H-imidazole. The ability of synthesized compounds to inhibit ACAT was evaluated in vitro by measuring the formation of cholesteryl[14C]oleate from cholesterol and [1-14C]oleoyl-CoA in rat liver microsomes. Among the tested compounds, only some thiazole ureas were able to inhibit ACAT in a reasonable degree. N-(4,5-diphenylthiazol-2-yl)- N'-[2,6-bis(2-methylethyl)phenyl] urea (11) and N-(4,5-diphenylthiazol-2-yl)-N'-n-butyl urea (16) were the most active compounds in the series showing IC50 values in the low micromolar range.  相似文献   

20.
Resistance of HIV-1 to protease inhibitors has been associated with changes at residues Val82 and Ile84 of HIV-1 protease (HIV PR). Using both an enzyme assay with a peptide substrate and a cell-based infectivity assay, we examined the correlation between the inhibition constants for enzyme activity (Ki values) and viral replication (IC90 values) for 5 active site mutants and 19 protease inhibitors. Four of the five mutations studied (V82F, V82A, I84V, and V82F/I84V) had been identified as conferring resistance during in vitro selection using a protease inhibitor. The mutant protease genes were expressed in Escherichia coli for preparation of enzyme, and inserted into the HXB2 strain of HIV for test of antiviral activity. The inhibitors included saquinavir, indinavir, nelfinavir, 141W94, ritonavir (all in clinical use), and 14 cyclic ureas with a constant core structure and varying P2, P2' and P3, P3' groups. The single mutations V82F and I84V caused changes with various inhibitors ranging from 0.3- to 86-fold in Ki and from 0.1- to 11-fold in IC90. Much larger changes compared to wild type were observed for the double mutation V82F/I84V both for Ki (10-2000-fold) and for IC90 (0.7-377-fold). However, there were low correlations (r2 = 0.017-0.53) between the mutant/wild-type ratio of Ki values (enzyme resistance) and the mutant/wild-type ratio of viral IC90 values (antiviral resistance) for each of the HIV proteases and the viruses containing the identical enzyme. Assessing enzyme resistance by "vitality values", which adjust the Ki values with the catalytic efficiencies (kcat/Km), caused no significant improvement in the correlation with antiviral resistance. Therefore, our data suggest that measurements of enzyme inhibition with mutant proteases may be poorly predictive of the antiviral effect in resistant viruses even when mutations are restricted to the protease gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号