首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
固相微萃取法在环境监测中的应用   总被引:23,自引:0,他引:23  
魏黎明  李菊白  欧庆瑜  梁冰 《分析化学》2004,32(12):1667-1672
固相微萃取技术(SPME)作为一种样品前处理技术,具有方便、快捷、不使用有机溶剂、灵敏、价廉等优点,已被广泛地应用于环境样品的分析。综合评述了采用SPME法对3种环境基质(气态、水体、固态)中的有机物、无机离子等近百余种污染物的监测情况,并对SPME法在环境监测中的应用进行了展望。  相似文献   

2.
该文以印尼产的燕窝为材料,使用固相微萃取(SPME)技术萃取燕窝中挥发性成分并以气相色谱-质谱(GC-MS)联用仪进行测定。考察了萃取头类型、萃取温度、萃取时间和解吸时间对固相微萃取(SPME)在燕窝挥发性成分测定中的影响。结果表明:以65μm聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头、在60℃下萃取60 min,解吸2 min的条件下,SPME/GC-MS技术可检出燕窝中挥发性成分醇、烃、醛、酯、醚类等化合物共82种。该方法具有操作简便、快速、重复性好和灵敏度高的特点,适用于燕窝中挥发性成分的测定。  相似文献   

3.
烟用浸膏香味成分分析对比研究   总被引:2,自引:0,他引:2  
应用同时蒸馏萃取(SDE)、液-液连续草取(LLE)、固相微萃取(SPME)三种方法分析了烟草浸膏香味成分,并对分析结果进行了对比研究。结果表明:SDE和LLE适于较精确的分析,但对某些成分缺乏足够灵敏度;SPME可弥补SDE和LLE的不足之处,但重现性较差,不适于严格的分析研究:同时,由于不同极性SPME纤维萃取头对样品有不同适应性,故需要认真地对其进行最适的选择。  相似文献   

4.
首次建立了1种用C16-MCM-41介孔复合材料作纤维涂层的固相微萃取(SPME)与高效液相色谱(HPLC)联用,测定环境水样中痕量葸的方法;对SPME的实验条件,如萃取和解吸时间、萃取温度、搅拌速度以及离子强度等进行了优化;方法的线性范围为0.018—71.2μg.L^-^1,检出限为5.9ng.L^-^1(S/N=3),相对标准偏差为0.033%(RSD,n=7);该法体现了SPME在样品前处理过程中的快速、灵敏、简单和无溶剂的特点。  相似文献   

5.
用化学刻蚀法制作了不锈钢丝固相微萃取(SPME)纤维头,与高效液相色谱(HPLC)联用测定了环境水样中的痕量苯并[a]芘(B[a]p),考察了影响SPME的实验参数如萃取时间、解吸时间、萃取温度、搅拌速率和离子强度对萃取效率的影响,建立了测定水样中痕量B[a]p的SPME-HPLC方法。方法的线性范围0.10~4.00 ng/mL,相对标准偏差为7.5%(n=6),检出限为0.04 ng/mL,实际水样的加标回收率90.0%~105.0%。微萃取头机械强度高、寿命长、制作成本低,方法适用于测定环境水样中的痕量B[a]p。  相似文献   

6.
研究了固相微萃取(SPME)-高效液相色谱(HPLC)联用测定水样中痕量苯并(k)荧蒽的的分析方法。对SPME的条件如萃取时间、萃取温度、离子强度、解吸方式、解吸溶剂、解吸时间和HPLC条件进行了优化,建立了SPME-HPLC联用分析水样中痕量苯并(k)荧蒽的方法,并用于自来水、雨水和纯净水等实际水样的分析。SPME优化的条件为室温、搅拌速度1100r/min、萃取时间30min、甲醇解吸溶剂、解吸时间2min。HPLC的条件为C18反相色谱柱、甲醇流动相、流速1mL/min、紫外检测器、波长244nm,以峰高为测量信号。方法的线性范围为0~8.00μg/L,检出限为0.014μg/L,相对标准偏差(n=6)为6.7%,回收率为82.0%~104.2%。该方法适合于水样中痕量苯并(k)荧蒽的分析。  相似文献   

7.
陶敬奇  王超英  李碧芳  李攻科 《色谱》2003,21(6):599-602
建立了固相微萃取(SPME)-高效液相色谱(HPLC)联用同时测定环境水样中8种多环芳烃的分析方法。优化了萃取时间、萃取温度、解吸时间、解吸溶液、解吸模式等条件。该法对8种多环芳烃的检出限为0.002-0.180 μg/L,相对标准偏差(RSD, n=6)为4.4%-12.2%。用该法分析江水中的痕量多环芳烃,除苯并[b]荧蒽外,其他7种多环芳烃的回收率为91.1%-115.8%,RSD(n=3)为3.6%-18.8%。方法快速、灵敏、简单,适用于快速分析环境水样中的痕量多环芳烃。  相似文献   

8.
申书昌  王文波  安红  张维冰 《分析化学》2004,32(8):1121-1121
固相微萃取(SPME)是90年代兴起的新型无溶剂样品前处理技术,基本的固相微萃取是通过石英纤维头表面涂渍的高分子层对样品中的有机分子进行萃取和预富集,然后进行色谱分析,使预处理过程大为简化,提高了分析速度及灵敏度。目前,商品SPME.GC联用装置是由美国Supclco公司生产的涂有PDMS、PA、PEG20M3种单一吸附质及4种部分交联的复合固相材料。涂层极性决定了其应用范围。  相似文献   

9.
固相微萃取-衍生化技术及其在环境和生物分析中的应用   总被引:11,自引:0,他引:11  
栾天罡  张展霞 《分析化学》2003,31(4):496-500
固相微萃取(SPME)是近年发展起来的一种无溶剂、简单快速的样品预处理方法。SPME同衍生化技术结合是拓展SPME方法的一个重要方向。对固相微革取与衍生化方法结合在环境及生物样品中极性分析和金屑有机化合物上的应用及进展进行了评述,又对SPME衍生化反应的方式和条件进行了讨论。  相似文献   

10.
自制固相微萃取装置对水中5种农药残留量的分析   总被引:2,自引:0,他引:2  
合成了一种丙烯酸酯聚合物,并将其作为固相微萃取涂层,使用自制的SPME装置和气质联用仪对水样中5种农药残留量进行分析,该装置制作简单、价格低廉.对影响分析灵敏度的各种实验因素进行了优化,在优化条件下分析5种农药标准样品质量浓度在1~1000 μg/L内与色谱峰面积呈良好的线性关系(r=0.995~0.999),检出限为0.391~1.170 ng/L.将自制涂层与商品涂层(PA)进行了比较,自制涂层对5种农药具有优良的吸附特性,较低的检出限.  相似文献   

11.
研究了微波辅助萃取(MAE)-固相微萃取(SPME)联合萃取、气相色谱-质谱法(GC-MS)测定土壤中水胺硫磷的分析方法;采用正交设计试验优化了微波升温程序、萃取温度、萃取时间、萃取溶剂体积等MAE条件;研究了SPME萃取涂层、萃取时间、解吸温度等对萃取效率的影响;方法的线性范围在1.O~20μg/L之间,检出限为O.49ng/g;测定25、100ng/g加标土壤样品,回收率分别为79%和107%。RSD分别为2.6%和6.5%;方法综合了MAE快速高效和SPME富集浓缩的优点,以水为萃取溶剂,特别适合于固体样品中痕量有机物的分析。  相似文献   

12.
张文敏  李青青  方敏  张兰 《色谱》2022,40(11):1022-1030
环境样品中多环芳烃(PAHs)含量较低且样品基质复杂,直接利用仪器进行含量测定比较困难,因此在仪器分析之前需要对环境样品进行必要的前处理。大多数前处理技术的萃取效率取决于萃取材料的特性。目前,金属有机骨架材料(MOFs)作为一种由金属离子与有机配体自组装而成的多孔材料,已经被用作固相微萃取(SPME)的涂层材料应用于PAHs的萃取,但是这些MOFs涂层材料由于目标物较难达到其深层的吸附位点,使得萃取过程往往需要较长的平衡时间;此外,大多数MOFs由单金属离子配位构成,能够提供的开放金属活性位点种类比较单一,较难获得最佳的萃取性能。这些问题在一定程度上限制了MOFs材料在SPME领域的应用。该研究制备了一种中空结构的双金属有机骨架材料(H-BiMOF),并将其作为SPME的涂层材料,用于萃取环境样品中痕量的PAHs。由于中空的结构和双金属的组成,H-BiMOF涂层材料拥有比表面积利用率高、传质距离短等优点,可以使萃取过程快速地达到平衡。同时,双金属的引入提供了种类丰富的金属活性位点,提高了对PAHs这类富电子云目标物的萃取效率。与气相色谱-串联质谱(GC-MS/MS)相结合,建立了一种用于环境水样中PAHs分析的新方法。所建立的分析方法具有检出限低(0.01~0.08 ng/L)、线性范围宽(0.03~500.0 ng/L)、重复性良好(相对标准偏差≤9.8%, n=5)等优点,并成功地用于实际湖水样品中7种PAHs的检测。实验结果表明,所建立的分析方法适用于环境样品中PAHs的分析与监测。  相似文献   

13.
刘志超  胡霞林  刘景富 《色谱》2010,28(5):513-516
以涂有聚二甲基硅氧烷(PDMS)的石英光导纤维作为固相微萃取纤维,建立了一次性固相微萃取与高效液相色谱联用测定环境水样中的菲、荧蒽和屈3种多环芳烃(PAHs)的方法。实验考察了解吸时间、萃取时间、搅拌速度、盐效应以及样品溶液pH值对萃取效率的影响,优化得到的萃取和解吸条件为: 于60 mL样品溶液中放入两段萃取纤维(1.5 cm)和1.2 g氯化钠,在1200 r/min搅拌速度下萃取60 min,取出萃取纤维并转入120 μL甲醇中密封静置解吸24 h后,取20 μL解吸液进行液相色谱测定。该方法对于菲、荧蒽和屈的检出限分别为0.17、0.17和0.08 μg/L;精密度(以测定0.5 μg/L PAHs标准溶液6次的相对标准偏差计)小于8%;实际样品中3种PAHs的加标回收率为80.0%~107%。该方法快速简便,纤维一次性使用,克服了污染物在纤维上残留的问题。  相似文献   

14.
溶胶-凝胶固相微萃取涂层及其在农药残留分析中的应用   总被引:1,自引:0,他引:1  
利用溶胶-凝胶(sol-gel)技术制备固相微萃取(SPME)涂层材料.通过硅醇盐前驱体与涂层聚合物羟基硅油(OH-TSO)的水解共聚的方法,成功地制备了聚二甲基硅氧烷sol-gel 涂层的SPME 萃取头,并以农药的混合标准水溶液为研究对象,用直接-固相微萃取-气相色谱法(GC)对涂层的性能进行考察,制成的萃取头适用于多种农药残留的萃取分离分析.  相似文献   

15.
建立了固相微萃取(SPME)与气相色谱(GC)联用测定饮料中残留的可挥发性卤代烃(VHH)的检测方法.探讨了影响SPME萃取效果的纤维涂层、离子强度、萃取时间等因素,并对饮料样品的预处理进行了研究.方法的检出限0.3μg/L,线性范围3~90μg/L,回收率在79.5%~104.3%之间,RSD在1.3%~12%之间.  相似文献   

16.
顶空固相微萃取-气质联用技术分析5种荷花的挥发性成分   总被引:1,自引:0,他引:1  
采用顶空固相微萃取-气相色谱质谱联用(HS-SPME-GC-MS)技术分析测定了5个品种荷花中的挥发性成分.考察了不同萃取头和萃取温度对荷花挥发性成分萃取的影响,选用65μm PDMS/DVB SPME萃取头和25℃室温萃取荷花中的挥发性成分得到较好的萃取效果.应用峰面积归一化法测定各挥发性成分的相对含量,5个品种共鉴...  相似文献   

17.
池缔萍 《分析试验室》2007,26(Z1):321-323
采用自动固相微萃取(Automated SPME)超声波辅助萃取技术(UE)与气相色谱联用测定水产品中五氯苯酚及其钠盐残留量.实验优化了SPME直接萃取技术,样品调pH 2,超声波40℃萃取30 min后,用85μm聚丙烯酸酯(PA)萃取头90℃自动搅拌萃取30 min,270℃解吸5 min.最低检出量为0.01μg/kg;五氯苯酚线性范围0.001~10 μg/L,r=0.9999;对鳕鱼加标五氯苯酚1.0、5.0μg/kg回收率分别为71.0%~80.0%、77.2%~91.4%,相对标准偏差(RSD)为6.3%和8.6%(n=3).该方法简便、灵敏、稳定,无溶剂污染,是测定水产品中五氯苯酚及其钠盐残留量的理想方法.  相似文献   

18.
胡彦学  杨秀敏  王志  王春  赵锦 《色谱》2005,23(6):581-584
建立了应用固相微萃取(SPME)-高效液相色谱(HPLC)-荧光检测法测定番茄中多菌灵(MBC)和噻菌灵(TBZ)的分析方法。考察了萃取纤维、萃取时间、萃取温度、解吸时间、解吸液组成、解吸模式、pH值、有机溶剂和离子强度对MBC和TBZ萃取效率的影响,对SPME条件和色谱条件进行了优化。SPME在室温下进行,采用65 μm聚二甲基硅氧烷/二乙烯苯(PDMS/DVB)萃取纤维,萃取溶液中加入100 g/L NaCl,搅拌速度为1100 r/min,萃取时间为50 min。将该法用于番茄中MBC和TBZ的测定,MBC和TBZ的定量线性范围均为0.01~1.0 mg/kg;线性相关系数分别为0.9958和0.9967;检出限分别为0.003和0.001 mg/kg;回收率分别为83.5%和85.6%(n=5),相对标准偏差(RSDs)分别为6.5%和3.8%。该方法操作简单,无需使用有机溶剂,适于分析番茄样品中的MBC和TBZ。  相似文献   

19.
固相微萃取技术的进展及其在食品分析中应用的现状   总被引:13,自引:1,他引:13  
胡国栋 《色谱》2009,27(1):1-8
固相微萃取(SPME)是当今色谱分析中使用极为广泛的样品前处理方法,这一技术将萃取、浓缩、解吸、进样等功能集于一体,灵敏度高且操作简便。该文简要介绍了近年来SPME涂层、装置及相应技术的演变,综述了SPME在国内外食品分析中的应用现状,并讨论了国内部分研究者在采用这一技术进行定量分析时存在的一些共性问题。  相似文献   

20.
以自制的1-十八烷基-3-(γ-三乙氧基硅基丙基)咪唑溴盐离子液体(C18IL)、二苯基二甲氧基硅烷(DDS)和四乙氧基硅烷(TEOS)为功能单体,采用溶胶-凝胶法制备了烷基咪唑基离子液体管内固相微萃取整体柱(C18IL in-tube SPME).以多环芳烃为分析对象,考察了C_(18)IL含量对C_(18)IL in-tube SPME萃取性能的影响,并对萃取条件进行了优化.建立了基于C_(18)IL in-tube SPME-气相色谱(GC-FID)的分析方法,用于检测萘、芴、菲、荧蒽和芘5种多环芳烃.该方法的检出限(S/N=3)为0.007~0.072μg/L,定量限(S/N=10)为0.023~0.24μg/L,日内和日间精密度(RSD)除菲类多环芳烃外均小于10%.将该方法用于检测咖啡中5种多环芳烃,3个不同浓度下的加标回收率为85.79%~103.42%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号