共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmacokinetics, bioavailability, metabolism, tissue distribution and urinary excretion of gamma-L-glutamyl-L-dopa in the rat 总被引:2,自引:0,他引:2
J Cummings L M Matheson L Maurice J F Smyth 《The Journal of pharmacy and pharmacology》1990,42(4):242-246
gamma-L-Glutamyl-L-dopa (gludopa) is believed to be a dopamine prodrug specific for the kidney. Its pharmacokinetics have been studied in the rat given 50 mg kg-1 intravenously (i.v.) and 60 mg kg-1 intraperitoneally (i.p.). By the i.v. route, elimination followed apparent first order kinetics and was biphasic with a t 1/2 alpha of 7 min and terminal half-life of 67 min. After i.p. administration absorption was rapid (t 1/2 ab 6 min), elimination was monophasic with a terminal half-life almost identical following i.v. dosing (65 min), and bioavailability was 40%. In tissues (liver and kidney) gludopa was biotransformed to four intact catecholic products (L-dopa, dopamine, DOPAC and gamma-L-glutamyl-dopamine) which appeared quickly (peaks at 15 min) and which were almost completely cleared by 4 h. Dopamine was the major kidney metabolite accounting for 69% of total catechol content with an AUC 31 times greater than in liver where it accounted for only 34% of total catechols. In rat urine eight major metabolites (5.7% of the dose) and at least 12 minor metabolites were detected of all of which 85% was dopamine. A higher percentage of the dose was excreted as intact catechols in man (15.7%) but fewer metabolites were detected (L-dopa, dopamine, DOPAC). It is confirmed that gludopa is kidney specific in rat but that the pharmacological effects of dopamine are likely to be short lived due to rapid clearance. Gludopa appears to be less dopamine specific in man. 相似文献
2.
Lin J Sahakian DC de Morais SM Xu JJ Polzer RJ Winter SM 《Current topics in medicinal chemistry》2003,3(10):1125-1154
Major reasons preventing many early candidates reaching market are the inappropriate ADME (absorption, distribution, metabolism and excretion) properties and drug-induced toxicity. From a commercial perspective, it is desirable that poorly behaved compounds are removed early in the discovery phase rather than during the more costly drug development phases. As a consequence, over the past decade, ADME and toxicity (ADMET) screening studies have been incorporated earlier in the drug discovery phase. The intent of this review is to introduce the desirable attributes of a new chemical entity (NCE) to the medicinal chemist from an ADMET perspective. Fundamental concepts, key tools, reagents and experimental approaches used by the drug metabolism scientist to aid a modern project team in predicting human pharmacokinetics and assessing the "drug-like" molecule are discussed. 相似文献
3.
Nature of the binding interaction for 50 structurally diverse chemicals with rat estrogen receptors.
This study was conducted to characterize the estrogen receptor (ER)-binding affinities of 50 chemicals selected from among the high production volume chemicals under the U.S. EPA's (U.S. Environmental Protection Agency's) Toxic Substances Control Act inventory. The chemicals were evaluated using the rat uterine cytosolic (RUC) ER-competitive binding assay, with secondary analysis using Lineweaver-Burk plots and slope replots to confirm true competitive inhibition and to determine an experimental K(i). Data from these ER-competitive binding assays represent the types of competitive binding curves that can be obtained when screening chemicals with broad structural diversity. True competitive inhibition was observed in 17 of 50 chemicals. Binding affinities were much lower than that of estradiol (E(2)) with K(i) concentrations ranging from 0.6 to 373 microM as compared with that of E(2) (0.77 nM). Other chemicals that appeared to displace radiolabeled E(2) binding to ER were, in fact, found not to be competitive inhibitors in the secondary K(i) experiments. These seven chemicals likely altered the stability of the assay by changing the buffer pH, denaturing ER, or disrupting the ER-binding kinetics. Thus, several conditions that may confound interpretation of RUC ER-binding assay data are illustrated. For another group of eight chemicals, neither an IC(50) nor K(i) could be determined due to solubility constraints. These chemicals exhibited slight (20-40%) inhibition at concentrations of 10-100 microM, suggesting that they could be competitors at very high concentrations, yet K(i) experiments were not possible as the limit of chemical solubility in the aqueous assay buffer was well above the IC(50). An additional 18 of the 50 chemicals were classified as nonbinders because in concentrations up to 100 microM they produced essentially no displacement of radiolabeled E(2). These results show that although the ER-competitive binding assay is a valuable tool for screening chemicals, secondary tests such as a double reciprocal Lineweaver-Burk experiment with slope replot should be used to confirm true competitive inhibition. This information will be useful for the ongoing validation of the RUC ER-competitive binding assay under the U.S. EPA's Endocrine Disruptor Screening Program, as well as to support research efforts to develop computational models designed to identify chemicals with the ability to bind to ER. 相似文献
4.
I Chu D C Villeneuve V Secours F M Benoit A Viau 《Drug metabolism and disposition》1982,10(6):632-635
The tissue distribution, metabolism, and elimination of 14C-octachlorostyrene (OCS) were studied in the rat. OCS was absorbed in the gastrointestinal tract after oral administration and distributed in all tissues examined. The highest concentrations were found in fat followed by adrenal glands, skin, and lungs. Decay of radioactivity in the tissues followed first-order kinetics. Approximately 8% of an iv dose was excreted in feces during 7 days after administration, while negligible amounts were found in the urine. More than 90% of the radioactivity in feces was due to the unchanged compound, while pentachlorophenyldichloroacetic acid and heptachlorostyrene in equal proportions accounted for the remaining 10%. A small amount (1%) of the dose was detected in the expired air as carbon dioxide. 相似文献
5.
Decabromodiphenyl ether in the rat: absorption, distribution, metabolism, and excretion. 总被引:8,自引:0,他引:8
Anna Morck Heldur Hakk Ulrika Orn Eva Klasson Wehler 《Drug metabolism and disposition》2003,31(7):900-907
Among the group of polybrominated diphenyl ethers used as flame-retardants, the fully brominated diphenyl ether, decabromodiphenyl ether (decaBDE), is the most commonly used. Despite the large usage of decaBDE, neither the metabolic pathways nor the absorption have been addressed, and there are very few studies on its toxicology. In this work, it is shown that after a single oral dose of 14C-labeled decaBDE to rats, at least 10% of the decaBDE dose is absorbed. The major excretion route in conventional rats is via feces that contained 90% of the decaBDE dose. The excretion in bile was close to 10% of the dose and represented mainly metabolites. It cannot be excluded that greater than 10% of the oral dose had been absorbed since 65% of the radioactivity excreted in feces was metabolites. The highest concentrations on a lipid weight basis were found in plasma and blood-rich tissues, and the adipose tissue had the lowest concentration of decaBDE. After derivatization of a phenolic fraction, gas chromatography-mass spectrometry (GC/MS) analyses indicated that metabolites with five to seven bromine atoms had formed, and they possessed a guaiacol structure (a hydroxy and a methoxy group) in one of the rings. In addition, traces of nonabrominated diphenyl ethers and monohydroxylated metabolites were found by GC/MS. Metabolites, characterized by their chemical properties, were interpreted to be covalently bound to macromolecules, either proteins or lipids. In addition, water solubility was suggested. The metabolic pathway was indicated to include a reactive intermediate. 相似文献
6.
A Ruiz-García M Bermejo V Merino G Sánchez-Casta?o J Freixas T M Garrigues 《European journal of pharmaceutics and biopharmaceutics》1999,48(3):253-258
The study demonstrates that the oral extent of bioavailability of flumequine in the rat, relative to the intravenous injection, is complete (0.94 +/- 0.04) and not significantly different from that found by the intraduodenal route (0.95 +/- 0.04). The rate of oral bioavailability, however, is slow (ka = 1.20 +/- 0.07 h-1; Tmax = 2.0 h), but enough to maintain plasma levels above the minimal inhibitory concentration of the most common pathogens for an extended period of time (about 10 h). The reason for the oral absorption slowness could be a slow gastric emptying, an adsorption to the gastric mucosae, a precipitation in the gastric medium or any other feature concerning the stomach as the intraduodenal administration is very quick (kid = 38.1 +/- 4.7 h-1; Tmax = 0.05 h). A possible precipitation of flumequine cannot be discarded as the solubility of flumequine is very low in the pH range of 3 to 6 (mean pH values for rat stomach and rat intestine, respectively; T.T. Kararli, Biopharm. Drug Dispos. 16 (1995) 351-380). Flumequine was shown to be not substantially excreted in bile (2-3% of the dose). Surprisingly, plasma levels and AUC values found for animals with interrupted bile flow always surpass those found for animals with enterohepatic circulation. This could be due to experimental model features, which might bias plasmatic flumequine concentrations if the homeostatic equilibrium of the animal is not completely restored due to the volume reduction induced by biliary extraction. 相似文献
7.
The absorption, metabolism and tissue distribution of di(2-ethylhexyl)phthalate in rats 总被引:1,自引:0,他引:1
Rats given a single oral dose of [14C] di(2-ethylhexyl) phthalate [14C] (DEHP) excreted 42% and 57% of the dose in the urine and faeces respectively in 7 days. A significant proportion (14%) of the dose is excreted in bile. Rats fed 1000 ppm DEHP in the diet for 7 days prior to dosing with [14C] DEHP excreted 57% and 38% in the urine and faeces respectively in 4 days.When fed continuously to rats at dietary concentrations of 1000 and 5000 ppm, the amount of the ester in liver and abdominal fat rapidly attains a steady-state concentration and there is no evidence of accumulation. When returned to a normal diet, the radioactivity in the liver declined with a half life of 1–2 days while that in fat declined rather more slowly to give a half life of 3–5 days. The relative liver weight increased to a level 50% above normal in rats receiving 5000 ppm DEHP and returned to normal within 1 week after being returned to normal diet.When administered intravenously DEHP is preferentially localised in lung, liver and spleen from where it is eliminated with a half-life of 1–2 days.The hexobarbital sleeping time was reduced by 30–40% in rats following repeated oral administration of DEHP; when the ester was administered intravenously sleeping time was increased by approx. 40%.DEHP is extensively metabolised after oral administration, the principal metabolites being identified as the acid, alcohol and ketone resulting from ω- and (ω-1)-oxidation of mono(2-ethylhexyl) phthalate (MEHP). DEHP is rapidly hydrolysed to the half-ester by pancreatic lipase. 相似文献
8.
Enantioselective pharmacokinetics of etodolac in the rat: tissue distribution, tissue binding, and in vitro metabolism. 总被引:1,自引:0,他引:1
The nonsteroidal anti-inflammatory agent etodolac (ET) exhibits stereoselectivity in its pharmacokinetics following administration to humans and rats. To underline the factors responsible for this stereoselectivity, the tissue distribution, in vitro tissue binding, and microsomal metabolism of ET enantiomers were studied in the rat. Following iv administration of racemic ET, the S:R AUC ratios in tissues were stereoselective, and different from that in plasma. Binding of enantiomers to tissues was stereoselective, although it did not relate well with in vivo tissue distribution. Rather, the tissue distribution of enantiomers appeared to be better explained by the unbound fractions of enantiomers in plasma. With respect to in vitro glucuronidation by liver microsomes, the Vmax of S-ET was 3.4-fold greater than that of R-ET; the enantiomers possessed similar Km. There appeared to be stereoselectivity in the oxidative metabolism of ET enantiomers by liver and kidney microsomes, in favor of the R-enantiomer. The lower AUC in rat plasma of pharmacologically active S-ET as compared with its antipode is due to its relatively greater distribution to tissues, owing to a lesser degree of binding to plasma proteins, and to its higher rate of glucuronidation. 相似文献
9.
10.
11.
The effects of nizatidine (a new H2-receptor antagonist) and of related compounds were studied on oxidative drug metabolism in the rat both in vivo and in vitro. Nizatidine is a structural analog of the H2-receptor antagonists ICI 125,211 (Tiotidine) and ranitidine (Zantac). Nizatidine (120 mg/kg, ip) had no effect on the [14C]aminopyrine (ABT) or [14C]caffeine breath (CBT) tests, nor on the clearance from plasma of aminopyrine despite high tissue and plasma concentrations of nizatidine. Binding of nizatidine (1 mM) to rat hepatic microsomal P-450 determined by spectral analysis was not observed. In vitro aminopyrine demethylation was inhibited by nizatidine only at high concentrations (Ki = 92 mM). Cimetidine, ICI 125,211, and imidazole bind avidly to rat hepatic microsomal cytochrome P-450 and are potent inhibitors of aminopyrine demethylation in vitro. Imidazole inhibited the aminopyrine breath test, while imidazole, ranitidine, and ICI 125,211 inhibited the caffeine breath in vivo. These data indicate that nizatidine has no acute inhibitory effect on hepatic oxidative drug metabolism in the rat, both in vitro and in vivo. The composite structural-activity data suggest that inhibition of in vivo oxidative drug metabolism by H2-antagonists may not depend primarily on either the imidazole ring side chain or the thiazole ring per se. Furthermore, the in vivo inhibition may not correlate with in vitro data. 相似文献
12.
13.
14.
Green T Swain C Van Miller JP Joiner RL 《Regulatory toxicology and pharmacology : RTP》2003,38(1):43-51
To better interpret the responses to para-nonylphenol (NP; CASRN84852-15-3) in in vivo toxicity studies, including estrogen-like activity, the bioavailability of 14C-radiolabelled NP has been determined in male and female CD rats following either single oral doses of 10 and 100 mg/kg, single i.v. doses of 10 mg/kg, or repeated daily oral doses of 10 mg/kg for up to 14 d. Up to 80% of an oral dose of NP was rapidly absorbed, the remainder being excreted unchanged in faeces. Excretion was largely complete within 24 h of dosing. Following absorption, NP was metabolised in the liver, with the majority of the metabolites excreted in bile, mainly as glucuronide conjugates. Unchanged NP was found only in bile and urine from female rats given a 100 mg/kg dose, indicating that metabolic saturation occurred. Following repeated dosing, steady state was reached within 7 d. There was no evidence of significant accumulation into tissue compartments nor of a significant change in clearance or the metabolite profiles in urine. These data suggest that the estrogen-like effects observed in toxicity studies with female rats at oral NP doses of approximately 50 mg/kg/d and greater are a result of the increased bioavailability of NP which occurs following metabolic saturation. 相似文献
15.
V Breinholt A Hossaini G W Svendsen C Brouwer E Nielsen 《Food and chemical toxicology》2000,38(7):555-564
The in vivo estrogenic potential of the flavonoids apigenin, kaempferol, genistein and equol was investigated in immature female mice. Genistein and equol, administered by gavage for 4 consecutive days [post-natal day (PND) 17-20, 100 mg/kg body weight], was found to significantly increase uterine weights and the overall uterine concentration of estrogen receptor alpha (ERalpha). In kaempferol- and equol-exposed mice the cytosolic ERalpha concentration was significantly increased as compared to the solvent control, which is speculated to result in an increased sensitivity of the uterus to subsequently encountered estrogens. Oral administration of equol, genistein, biochanin A and daidzein to 6-week-old female mice revealed a great variation in their systemic bioavailability. The urinary recovery of equol was thus over 90% of a single gavage administered dose, whereas the urinary recoveries of biochanin A, genistein and daidzein were 16, 11 and 3%, respectively. Most of the metabolites were either hydroxylated or dehydrogenated forms of the parent compounds. The in vitro estrogenic potency of some of the metabolites was greater than that of the parent compounds, whereas others were of similar or lower potency. Bioavailability, metabolism, the ability to alter ERalpha distribution in the uterus and the estrogenic potential of parent compound and metabolites may thus contribute to the differences in in vivo estrogenicity of dietary flavonoids. 相似文献
16.
Fagiolino P Vázquez M Eiraldi R Maldonado C Scaramelli A 《Clinical pharmacokinetics》2011,50(2):75-80
Cytochrome P450 enzymes and efflux transporters, expressed in the intestine and/or in the liver, play important roles in drug clearance and oral bioavailability. The relative contribution of transporters and enzymes in drug metabolism is still controversial. Some antiepileptic drugs, such as carbamazepine, phenytoin and phenobarbital (phenobarbitone), show time-dependent and dose-dependent pharmacokinetics due to their inductive effect on both efflux transporters and enzymes. However, steady-state plasma drug concentrations for each antiepileptic drug do not relate to oral daily dose in the same way, with decreased or increased apparent clearance according to the drug. A multicompartment pharmacokinetic model was developed in order to explain these different behaviours using a single mechanism of inductive action. The key for solving these apparent dissimilarities was to consider in the model the unique physiological connection that intestine, liver and bloodstream have. Efflux transporters not only enhance enzymatic competition in relation to first-order processes, but also change the predominance of some elimination routes. For instance, the carbamazepine-10,11-epoxide formation increases at the expense of other carbamazepine metabolites, enhancing both the systemic and presystemic elimination of parent drug. Conversely, the major hepatic metabolism of phenytoin diminishes in favour of its minor intestinal elimination, decreasing the total drug clearance. 相似文献
17.
Solon EG 《Chemical research in toxicology》2012,25(3):543-555
Radioactivity has been used in drug discovery and development for several decades because it offers researchers a highly sensitive way to quantitatively assess the absorption, distribution, metabolism, and/or excretion (ADME) of chemical entities by incorporating a radioactive isotope into the structure of the drug molecule. Regulatory agencies around the world require drug makers to characterize the ADME properties of prospective new drugs as one way to help ensure that patients are not exposed to dangerous drug and/or drug metabolite levels before they can be approved for human use. Radiolabeled compounds have consistently proved to be the most efficient tool for determining that information, even though attempts have been made to use nonradioactive techniques. The techniques of quantitative whole-body autoradiography (QWBA) and microautoradiography (MARG), which rely on the use of radiolabeled drugs, are two techniques that are routinely used to examine tissue distribution of drugs in discovery and development. These techniques provide drug researchers with quantitative tissue concentration data and a visual location of those concentrations in intact organs, tissues, and cells of laboratory animals. It is important for readers to realize that these techniques visualize total radioactivity, which can include the parent molecule along with its metabolites, and/or degradation products or impurities. This requires investigators to treat the quantitative data with caution unless the identity of the radioactivity is determined using some type of other bioanalytical techniques, such as mass spectroscopy and/or radio-HPLC, which can be easily performed on the tissue obtained from the animals used for QWBA and/or MARG. Nevertheless, these data are used in drug discovery and development to answer questions related to tissue penetration, fetal/placental transfer, tissue retention, routes of elimination, drug-drug interactions, enzyme induction/inhibition, formulation comparisons, in vivo compound solubility, differential metabolite distribution, interspecies comparisons, and to predict human exposure to parent drugs, metabolites, and radiation during clinical studies. This review will consider the strategic use of WBA, QWBA, and MARG in the pharmaceutical industry. Case studies and anecdotal information will also be presented; however, readers should realize that these are general examples and that some details have been omitted for brevity and/or because the data is proprietary and could not be presented at this time. Nevertheless, the images and discussions are provided to demonstrate how the techniques can and have been used to examine in situ tissue distribution of therapeutic compounds. 相似文献
18.
E.M. Persson A. Nordgren P. Forsell L. Knutson C.
hgren S. Forssn H. Lennerns B. Abrahamsson 《European journal of pharmaceutical sciences》2008,34(1):22-29
The purpose of this study was to investigate the relative importance of mechanisms behind the effect of food on the intestinal absorption and bioavailability for low solubility compounds by applying a porcine single-pass perfusion model. Nanoparticle suspensions of the model compounds, danazol and cyclosporine were perfused through the jejunum in isotonic fluid alone (control) and isotonic fluid with a P-glycoprotein (P-gp) inhibitor (verapamil) or dietary and endogenous lipids added. The drugs were also administered as saturated solutions in the isotonic fluid containing lipids. Administration of cyclosporine together with verapamil increased the absorption compared to the control (1.6 times) suggesting an effect on jejunal permeability. However, addition of dietary lipids to the media led to a 50% reduction in the absorption of cyclosporine indicating lack of major effects by P-gp inhibition by lipids in vivo. The absorption of danazol was increased (2.6 times) when administered as a nanosuspension in lipid containing media compared to the control, but decreased (60%) when administered as a solution in the same media. This shows how important dissolution of the drug nanoparticles is in drug absorption. The difference in the effect of lipids in the absorption of cyclosporine and danazol when administered as nanosuspensions may be due to different distribution to the colloidal structures present in the media, thereby rendering the drugs’ different diffusion rates in the perfused segment. In conclusion, solubilisation seems to be a more important factor than P-gp inhibition as an explanation for the food–drug interaction observed for several low solubility drugs. In addition, the partition into different colloidal structures seems to play a major role in the dissolution and absorption of poorly soluble drugs. 相似文献
19.
Evaluation of fresh and cryopreserved hepatocytes as in vitro drug metabolism tools for the prediction of metabolic clearance. 总被引:7,自引:0,他引:7
Dermot F McGinnity Matthew G Soars Richard A Urbanowicz Robert J Riley 《Drug metabolism and disposition》2004,32(11):1247-1253
The intrinsic clearances (CLint) of 50 neutral and basic marketed drugs were determined in fresh human hepatocytes and the data used to predict human in vivo hepatic metabolic clearance (CLmet). A statistically significant correlation between scaled CLmet and actual CLmet was observed (r2 = 0.48, p < 0.05), and for 73% of the drugs studied, scaled clearances were within 2-fold of the actual clearance. These data have shown that CLint data generated in human hepatocytes can be used to provide estimates of human hepatic CLmet for both phase I and phase II processes. In addition, the utility of commercial and in-house cryopreserved hepatocytes was assessed by comparing with data derived from fresh cells. A set of 14 drugs metabolized by the major human cytochromes P450 (P450s) (CYP1A2, 2C9, 2C19, 2D6, and 3A4) and uridine diphosphate glucuronosyltransferases (UGT1A1, 1A4, 1A9, and 2B7) have been used to characterize the activity of freshly isolated and cryopreserved human and dog hepatocytes. The cryopreserved human and dog cells retained on average 94% and 81%, respectively, of the CLint determined in fresh cells. Cryopreserved hepatocytes retain their full activity for more than 1 year in liquid N2 and are thus a flexible resource of hepatocytes for in vitro assays. In summary, this laboratory has successfully cryopreserved human and dog hepatocytes as assessed by the turnover of prototypic P450 and UGT substrates, and both fresh and cryopreserved human hepatocytes may be used for the prediction of human hepatic CLmet. 相似文献
20.
In this study the absorption, tissue distribution and excretion of 14C-labeled di-n-octyltin dichloride ([14C]DOTC) in rats were investigated after oral and intravenous (i.v.) administration. Although after i.v. administration with 1.2 mg [14C]DOTC/kg body weight the tissue radioactivity was about 3-4 times higher than after oral administration with 6.3 mg [14C]DOTC/kg body weight, the relative tissue accumulation was found to be the same after the oral and i.v. dosage. The highest amount of radioactivity was found in liver and kidney, and to a lesser degree in adrenal, pituitary and thyroid glands. The lowest activity was recovered from blood and brain. No selective accumulation was observed in thymus, although it has been reported that thymus atrophy is the most sensitive parameter of DOTC toxicity in rats. For all tissues a time dependent decrease in radioactivity was found, except for kidney. The excretion of radioactivity in feces and urine was determined after a single i.v. or oral dose of 1.2 and 2 mg [14C]DOTC, respectively. After i.v. administration most of the radioactivity was excreted in the feces which was characterized by a biphasic excretion pattern. In orally treated rats more than 80% of the radioactivity was already excreted in the feces during the first day after administration. This indicated that only a small part of the DOTC was absorbed, which was calculated to be approximately 20% of the dose. Similar half-life values of 8.3 and 8.9 days were obtained from the fecal excretion of radioactivity after the i.v. and oral administration, respectively. The urinary excretion of radioactivity appeared to be independent of the body burden, since the daily amount of radioactivity excreted in urine was nearly the same independent of the route of administration as well as the time after administration. 相似文献