首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT A protein kinase (PK) was partially purified from NaCl extracts of the cell surface complex of Euglena using DEAE-cellulose chromatography. Tubulins extracted either from flagella or from the cell surface complexes of Euglena were readily phosphorylated when incubated with [γ-32P]-ATP and the PK. Protein kinase activity was augmented with 5 mM Mn2+ or Mg2 and was inhibited or had greatly reduced activity with 5 mM Ca2+, Co2-, Cu2+ or Zn2+. Incorporation was much lower when [γ-32P]-GTP was the phosphate donor. Serine and threonine were the major radiolabeled phosphoamino acids in tubulins; label was also found in phosphotyrosine. Alpha-tubulin solubilized from flagella was a relatively poor substrate for the PK, but a Euglena α-tubulin cDNA overexpressed as a Trx-fusion protein incorporated [γ-32P]-ATP into serine and threonine when incubated with cell surface extracts. Alpha- and β-tubulins from cell surface complexes were equally good substrates for the PK. No incorporation was observed in intact microtubules either from the cell surface complex or from isolated flagella. In-gel assays identified a polypeptide of about 30 kDa that phosphorylated tubulins in extracts of both flagella and the cell surface complexes, and dephosphorylated casein was a competitive substrate for the partially purified kinase. In vivo incubation with [32P]-orthophosphate produced numerous radiolabeled bands in acrylamide gels of NaCl extracts of the cell surface complex, but none of these bands could be positively related to tubulins extracted from surface complex microtubules.  相似文献   

2.
Abstract: Phosphorylation of brain spectrin was studied by a combination of in vivo and in vitro approaches. Chemical analysis of phosphate groups on electrophoretically purified mouse brain β-spectrin yielded a stoichiometry of 3.2 ± 0.18 mol of PO4/mol of β-spectrin. The spectrin isolated by chromatographic methods from mouse brain, pig brain, and human erythrocytes yielded 4.1, 5.6, and 3.2 mol of PO4/mol of spectrin heterodimer, respectively. The 32P labeling of spectrin in retinal ganglion cell neurons or NB 2a/d1 neuroblastoma cells with [32P]orthophosphate showed phosphorylation of only β-spectrin in vivo. Two-dimensional phosphopeptide map analyses showed that most of the in vivo sites on β-spectrin were phosphorylated by either a heparin-sensitive endogenous cytoskeleton-associated protein kinase or protein kinase A. Phosphoamino acid analysis of in vivo and in vitro phosphorylated β-spectrin showed that [32P]phosphate groups were incorporated into both serine (>90%) and threonine residues. In vitro, phosphate groups were incorporated into threonine residues by the heparin-sensitive endogenous protein kinase. The amino acid sequence VQQQLQAFNTY of an α-chymotryptic 32P-labeled peptide phosphorylated by the heparin-sensitive cytoskeleton-associated endogenous protein kinase corresponded to amino acid residues 338–348 on the β1 repeat of β-spectrinG (βSPIIa) gene. These data suggest that phosphorylation of Thr347, which is localized on the presumptive synapsin I binding domain of β-spectrinG, may play a role in synaptic function by regulating the binding of spectrin to synaptic vesicles.  相似文献   

3.
Abstract: Myelin membrane prepared from mouse sciatic nerve possesses both kinase and substrates to incorporate [32P]PO43− from [γ-32P]ATP into protein constituents. Among these, P0 glycoprotein is the major phosphorylated species. To identify the phosphorylated sites, P0 protein was in vitro phosphorylated, purified, and cleaved by CNBr. Two 32P-phosphopeptides were isolated by HPLC. The exact localization of the sequences around the phosphorylated sites was determined. The comparison with rat P0 sequence revealed, besides a Lys172 to Arg substitution, that in the first peptide, two serine residues (Ser176 and Ser181) were phosphorylated, Ser176 appearing to be modified subsequently to Ser181. In the second peptide, Ser197, Ser199, and Ser204 were phosphorylated. All these serines are clustered in the C-terminal region of P0 protein. This in vitro study served as the basis for the identification of the in vivo phosphorylation sites of the C terminal region of P0. We found that, in vivo, Ser181 and Ser176 are not phosphorylated, whereas Ser197, Ser199, Ser204, Ser208, and Ser214 are modified to various extents. Our results strongly suggest that the phosphorylation of these serine residues alters the secondary structure of this domain. Such a structural perturbation could play an important role in myelin compaction at the dense line level.  相似文献   

4.
Abstract: Annexin 2 phosphorylated in vitro by protein kinase C has been shown to restore partially catecholamine secretion in streptolysin O-permeabilized chromaffin cells depleted of their protein kinase C activity. This result suggested a phosphorylation of annexin 2 in stimulated cells. Nicotine stimulation induced an increase of 32P incorporation in annexin 2 heavy chain concomitant with catecholamine release. This incorporation results from phosphorylation by protein kinase C because (a) serine was the only phosphorylated residue, (b) 32P incorporation was inhibited by the protein kinase inhibitors H7, GF 109203X, and staurosporine, and (c) activators of this enzyme, 12- O -tetradecanoylphorbol 13-acetate and 1,2-dioctanoylglycerate, increased the incorporation of radioactivity. The phosphorylated heavy chain had an electrophoretic mobility lower than that of the unmodified one, thus allowing determination of the fraction of phosphorylated protein. In the resting state, a significant fraction of annexin 2 heavy chain was phosphorylated, and nicotine stimulation resulted in an activation of both phosphorylation and dephosphorylation. Phosphorylation was largely increased in the presence of okadaic acid, indicating the involvement of type 1 and 2A phosphatases.  相似文献   

5.
Two protein kinase activities were found in plasma membrane-enriched preparations from red beet ( Beta vulgarix L.). The kinases in these preparations produced the phosphorylation of several membrane polypeptides. These kinases also phosphorylated histone III-S and casein. The activities of two different kinases could be distinguished: one was half-maximally stimulated by 1 μ M free Ca2+ phosphorylated histone III-S better than casein, showed half-maximal activity at an ATP concentration of 0.071 m M . had an optimum pH of 7, and was poorly inhibited by GTP, CTP or UTP. Another, much lower, kinase activity that phosphorylated casein was also observed; it was Ca2+ independent, showed half-maximal activity at ATP concentrations of 0.017 and 0.287 m M , exhibited a broad pH optimum about pH 7 and was inhibited by GTP, CTP, UTP or GDP to a greater extent than the calcium-stimulated activity. When plasma membrane proteins were solubilized with lysophosphatidyicholine and treated with [γ-32P]ATP at several dilutions, a 125-kDa polypeptide was autophosphorylated in the absence of Ca2+, while 77-, 71- and 65-kDa polypeptides were autophosphorylated in its presence. Autophosphorylation in gels after electrophoresis showed a Ca2+-stimulated phosphoprotein band at 64 kDa.  相似文献   

6.
Abstract: In a previous study, protein kinase FA/glycogen synthase kinase-3 ( FA/GSK-3 ) was identified as a myelin basic protein (MBP) kinase associated with intact brain myelin. In this report, the phosphorylation sites of MBP by kinase FA/GSk-3 were further determined by two-dimensional electrophoresis/TLC, phosphoamino acid analysis, tryptic peptide mapping, Edman degradation, and direct sequencing. Kinase FA/GSK-3 phosphorylates MBP on both threonine and serine residues. Three tryptic phosphopeptide peaks were resolved by C18 reverse-phase HPLC. Sequential manual Edman degradation together with direct sequence analysis revealed that T(p)PPPSQGK is the phosphorylation site sequence for the first major phosphopeptide peak. When mapping with the bovine brain MBP sequence, we finally demonstrate Thr97-Pro, one of the in vivo phosphorylation sites in MBP, as the major site phosphorylated by kinase FA/GSK-3, implicating a physiologically relevant role of FA/GSK-3 in the regulation of brain myelin function. By using the same approach, we also identified NIVT94(p)PR as the phosphorylation site sequence in the second major tryptic phosphopeptide derived from [32P]MBP phosphorylated by kinase FA/GSK-3, further indicating that kinase FA/GSK-3 represents a Thr-Pro motif-directed MBP kinase involved in the phosphorylation of brain myelin.  相似文献   

7.
Abstract. The authors have previously shown that cell treatments causing intra-cellular alkalinization stimulate the in vivo phosphorylation of a 33-K Dalton polypeptide (33 KP) (Tognoli & Basso, 1987). Here, the authors report that this polypeptide belongs to a protein associated with the microsomal membranes. They show that treatment of cells which induce intracellular alkalinization stimulate 33-KP phosphorylation, whether the phosphorylation is performed in vivo (cells loaded with 32Pi before treatments) or in vitro (microsomes from control and treated cells, incubated with γ32P ATP). In both cases, 33 KP is phosphorylated on a serine residue. Microsomes do not show any phosphatase activity towards this phosphorylated protein, indicating involvement of a protein kinase reaction as an effector of changes induced by intracellular alkalinization. The number of phosphorylated sites or molecules of this protein increases as a result of intracellular alkalinization, suggesting that intracellular alkalinization causes topological or conformational modifications to a protein kinase or its substrate protein. The in vitro phosphorylation is not specifically influenced by the pH of the in vitro phosphorylation medium, suggesting that protein phosphorylation is not directly controlled by cytoplasmic pH.  相似文献   

8.
Abstract: The composition of tissue gangliosides is thought to result mainly from the active regulation and selective expression of specific enzymes responsible for their metabolism. In the last few years, we have purified several rat brain sialyltransferases to homogeneity; the availability of these highly purified enzymes enabled us to investigate their regulation and expression at the molecular level. Thus, we studied the regulation of sialyltransferase activities, in particular, CMP-NeuAc:GM1 and CMP-NeuAc:LacCer sialyltransferases by a phosphorylation/dephosphorylation mechanism. Protein kinase C was added to a standard enzyme assay mixture containing [γ-32P]ATP, and the activity of the enzyme was measured after various incubation times. We found that treatment of several sialyltransferases by protein kinase C decreased their activities in a time-dependent manner. Analyses of 32P-labeled amino acids revealed that the major phosphorylation site of CMP-NeuAc:GM1 α2→3 sialyltransferase (ST-IV) was serine and that for CMP-NeuAc:LacCer α2→3 sialyltransferase (ST-I) was primarily threonine. Partial recovery of the enzyme activity could be achieved by treatment of the phosphorylated sialyltransferases with rat brain protein phosphatase. We conclude that the activities of sialyltransferases can be modulated by protein kinase C and protein phosphatase and this may represent a potential regulatory mechanism for ganglioside biosynthesis.  相似文献   

9.
Gary Bailin   《BBA》1977,462(3):689-699
A human skeletal actin · tropomyosin · troponin complex was phosphorylated in the presence of [γ-32P]ATP, Mg2+, adenosine 3′:5′-monophosphate (cyclic AMP) and cyclic AMP-dependent protein kinase (protein kinase). Phosphorylation was not observed when the actin complex was incubated in the absence of protein kinase or 1 μM cyclic AMP. In the presence of 10−7 M Ca2+ and protein kinase 0.1 mole of [32P]phosphate per 196 000 g of protein was incorporated. This was two-fold higher than the [32P]phosphate content of a rabbit skeletal actin complex but two-fold lower than that of a bovine cardiac actin complex. At high Ca2+, 5 · 10−5 M, little change in the phosphorylation of a human skeletal actin complex occurred. Phosphoserine and phosphothreonine were identified in the [32P]phosphorylated actin complex. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate showed that 60% of the label was associated with the tropomyosin binding component of troponin. The inhibitory component of troponin contained 16% of the bound [32P]phosphate. Increasing the Ca2+ concentration did not significantly decrease the [32P]phosphate content of the phosphorylated proteins in the actin complex. No change in the distribution of phosphoserine or phosphothreonine was observed. Half maximal calcium activation of the ATPase activity of reconstituted human skeletal actomyosin made with the [32P]phosphorylated human skeletal actin complex was the same as a reconstituted actomyosin made with an actin complex incubated in the absence of protein kinase at low or high Ca2+.  相似文献   

10.
Chlamydiae are obligate intracellular bacteria that replicate within a non-acidified vacuole called an inclusion. Chlamydia psittaci (strain GPIC) produces a 39 kDa protein (IncA) that is localized to the inclusion membrane. While IncA is present as a single 39 kDa species in purified reticulate bodies, two additional higher M r forms are found in C. psittaci -infected cells. This finding suggested that IncA may be post-translationally modified in the host cell. Here we present evidence that IncA is a serine/threonine phosphoprotein that is phosphorylated by host cell enzymes. This conclusion is supported by the following experimental findings: (i) treatment of infected cells with inhibitors of host cell phosphatases or kinases altered the electrophoretic migration pattern of IncA; (ii) treatment with calf intestinal alkaline phosphatase eliminated the multiple-banding pattern of IncA, leaving only the protein band with the lowest relative molecular weight; and (iii) radioimmunoprecipitation of lysates of [32P]-orthophosphate-labelled infected HeLa cells with anti-IncA antisera demonstrated that the two highest M r IncA bands were phosphorylated. A vaccinia-virus recombinant expressing incA was used to determine if HeLa cells can phosphorylate IncA in the absence of a chlamydial background. IncA in lysates of these cells migrated identically to that seen in C. psittaci -infected cells, indicating the host cell was responsible for the phosphorylation of the protein. Microinjection of fluorescently labelled anti-IncA antibodies into C. psittaci -infected HeLa cells resulted in immunostaining of the outer face of the inclusion membrane. Collectively, these results demonstrate that IncA is phosphorylated by the host cell, and regions of IncA are exposed at the cytoplasmic face of the inclusion.  相似文献   

11.
Abstract— Cultured pineal glands incorporated 32P into membrane phospholipids. Treatment of cultured glands with norepinephrine, which is known to stimulate membrane- bound pineal adenyl cyclase and to increase the production and secretion of melatonin, stimulated the incorporation of 32P into a phospholipid fraction of membranes and particulates containing phosphatidyl serine and phosphatidyl inositol. The labelling of other phospholipid fractions and the total 32P in the gland were not changed by norepinephrine treatment. Experiments with chronically-denervated pineal glands indicated that the effect of norepinephrine on the [32P]labelling of phospholipids occurred at a postsynaptic site. When norepinephrine-stimulated secretion of melatonin was partially inhibited by p -chlorophenylalanine (a compound which blocks the synthesis of melatonin precursors), the norepinephrine-stimulated labelling of phospholipids was still observed. Conversely, when melatonin secretion was stimulated in the absence of norepinephrine by treatment with the immediate precursor of melatonin, N -acetylserotonin, a stimulation of 32P- labelling of phospholipids did not occur. These observations suggest that the increased [32P]- labelling of a phospholipid fraction caused by the norepinephrine treatment is not related to the secretion of melatonin. This effect on phospholipids may be associated with the interaction of norepinephrine with a membrane-bound postsynaptic receptor. Stimulation by norepinephrine of [32P]-incorporation into phospholipids has not been previously reported to occur in a tissue in which cholinergic fibres are absent.  相似文献   

12.
Abstract: Neurofilament polypeptides phosphorylated in vitro by incubation of neurofilament-enriched preparations from rat CNS with [γ-32P]ATP were compared with the corresponding polypeptides labeled in vivo by injection of 32Pi into the lateral ventricles of rats. Autoradiography of sodium dodecyl sulfate (SDS)-polyacrylamide gels revealed that the major phosphorylated species in both preparations were the three neurofilament subunits, which have molecular weights of 200K, 145K, and 68K. However, the relative levels of 32P detected in the three in vitro -labeled subunits differed from the relative in vivo levels. The two larger neurofilament polypeptides displayed similar 32P isoprotein distribution patterns on two-dimensional gels, whereas additional isoproteins were seen in the in vitro -labeled 68K species. Limited proteolysis in SDS-polyacrylamide gels revealed the presence of common phosphopeptides in the corresponding pairs of in vitro- and in vivo-labeled subunits, but the in vivo -labeled 145K and in vitro -labeled 200K polypeptides contained additional digestion products. Two-dimensional peptide mapping of the 68K polypeptide digested with a mixture of trypsin and chymotrypsin indicated that this component was phosphorylated at a single, identical site, both in vivo and in vitro. These results indicate that the protein kinase that copurifies with neurofilament preparations may be involved in their in vivo phosphorylation.  相似文献   

13.
Abstract: The tail domain of the midsize chicken neurofilament polypeptide (NF-M) contains several different types of Ser-Pro and Thr-Pro putative phosphorylation sites. We determined which of these sites are actually phosphorylated in vivo. Chick sensory neuron cultures were incubated in [32P]phosphate, and the cytoskeletal fraction was mixed with a neurofilament fraction prepared from adult chicken brain. NF-M was purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and digested with chymotrypsin, and two large fragments were isolated. These were individually cleaved with trypsin, endoprotease Lys-C, or endoprotease Glu-C, and peptides separated by two-dimensional high-voltage electrophoresis and thin-layer chromatography. 32P-labeled phosphopeptides were eluted from the cellulose plates and subjected to microsequencing and mass spectometry. We found that of 21 potential Ser-Pro and Thr-Pro phosphoacceptor sites, at least 20 are phosphorylated in vivo: all four Lys-Ser-Pro sites and at least 16 of the 17 Lys-Xaa-Xaa-Ser/Thr-Pro repeats. In addition, a novel Ser-Pro site in the extreme carboxy terminus is phosphorylated. This site, which has no proximal Lys residue, is also found in mammalian NF-M, but has not been reported to be phosphorylated. Together with three casein kinase I sites we have found recently in the acidic amino-terminal segment of the tail, a total of 24 or 25 Ser and Thr phosphoacceptor sites have now been located in the chicken NF-M tail.  相似文献   

14.
Phosphorylation of Neuronal Kinesin Heavy and Light Chains In Vivo   总被引:9,自引:0,他引:9  
Abstract: The microtubule-based motor protein kinesin is thought to drive anterograde organelle transport in axons, but nothing is known about how its force-generating activity or organelle-binding properties are regulated. Studies in other motility systems suggest that protein phosphorylation is a reasonable candidate for this function. I report here that the kinesin heavy chain (HC) and light chain (LC), as well as the 160-kDa kinesin-associated protein kinectin, are phosphorylated in vivo in cultures of chick sympathetic neurons and PC12 cells labeled metabolically with 32P. In neurons, both kinesin chains are phosphorylated exclusively on serine residues, and limiting tryptic digestion demonstrated that the phosphorylation sites are clustered in a region of ˜5 kDa for the HC and ˜14 kDa for the LC. Partial tryptic digestion of 32P-labeled HC followed by immunoblotting with SUK4 monoclonal anti-HC and fluorography showed that the sites of HC phosphorylation are outside the globular N-terminal head region where kinesin's microtubulebinding and mechanochemical activities reside. Treatment of metabolically labeled neurons with forskolin, phorbol esters, or calcium ionophore did not alter the extent of phosphorylation, the phosphoamino acid composition, or the V8 protease phosphopeptide maps of the HC, LC, and 160-kDa protein, with one exception: treatment with calcium ionophore reduced the specific activity of the LC. In addition, when kinesin from PC12 cells was compared with that from PC12-derived cell lines lacking protein kinase A activity, neither the extent of phosphorylation nor the phosphopeptide maps were altered for either chain. Phosphopeptide mapping experiments also showed that postlysis kinase activity can phosphorylate both the neuronal HC and LC at sites not phosphorylated in vivo.  相似文献   

15.
A 40000 g supernatant fraction from extracts of germinating wheat ( Triticum turgidum Desf. cv. Edmore) endosperm contains protein kinase activity that phosphorylates several endogenous proteins. In vitro incorporation of radiolabel from [32P]-ATP into phosphoproteins was maximal in the presence of 1 m M CaCl2 and 5 m M MgCl2Ca2+ at micromolar concentrations greatly stimulated the phosphorylation of 49 and 47 kDa polypeptides and also inhibited the phosphorylation of a few specific polypeptides. The phosphorylation of the 49 and 47 kDa polypeptides was present at 2 days after seed germination and was maximal at 8 days. Quantitative protein changes were also detected during the seed germination, but differences could not be correlated with changes in protein phosphorylation. Phosphoamino acid analysis by two dimensional thin-layer electrophoresis showed that the Ca2+-dependent protein kinase phosphorylates a serine residue of the 47 kDa polypeptide. Ca2+-dependent protein kinase phosphorylates a serine residue of the 47 KDa polypeptide. Ca2+ dependent protein phosphorylktion was inhibited by phenothiazine-derived drugs. Addition of S-adenosylmethionine to the in vitro phosphorylation reaction specifically inhibited the Ca2+-dependent protein phosphorylation.  相似文献   

16.
Abstract. As demonstrated previously, the transition of starving Dictyostelium cells from growth to differentiation phase occurs at a particular position (putative shift point; PS-point) in G2-phase of the cell cycle of Dictyostelium discoideum Ax-2. In this study we examined what proteins are phosphorylated or dephosphorylated at the onset of starvation, with special emphasis on changes of phosphoproteins near the PS-point. When AX-2 cells at any particular phase of the cell cycle were pulse-labeled with inorganic 32P (32Pi) in the presence or absence of nutrients, it was found that 101 kDa and 90 kDa phosphoproteins exhibit specific changes around the PS-point. From the chase-experiments of 32P-labeled cells, the 101 kDa and 90 kDa proteins were found to fail to be phosphorylated at the PS-point under starvation conditions. The protein phosphatase inhibitors such as okadaic acid and calyculin A inhibited completely entry of starving Ax-2 cells to differentiation, and also blocked perfectly dephosphorylation of 32 kDa protein. Taken together it is likely that dephosphorylation of 32 kDa protein as well as low phosphorylation levels of 101 kDa and 90 kDa proteins may be required for the phase-shift of Ax-2 cells from growth to differentiation. Subcellular fractionation showed the 101 kDa phosphoprotein to be located in cytoplasm, while parts, at least, of the 90 kDa and 32 kDa phosproproteins were in the nucleus. In addition, the results of cellulose thin-layer electrophoresis of digested 101 kDa and 90 kDa phosphoproteins show that in both proteins only serine residues are phosphorylated. The significance of phosphorylation states of 101 kDa, 90 kDa, and 32 kDa proteins is discussed in relation to a breakaway of cells from proliferation to differentiation.  相似文献   

17.
Abstract— In order to investigate synthesis and phosphorylation of the various fractions of nuclear proteins. [3H]leucine and [32P] phosphate incorporation were studied with tissue slices in vitro. Cerebral cortex and cerebellum were used to delineate the similarity and dissimilarity within CNS, and liver was taken to compare the extraneural organ. There were significant differences in [3H]leucine incorporation into nuclear proteins among those tissue sources examined, while [32P]phosphate incorporation showed very similar results among them. Although the acidic chromatin protein demonstrated high activity in each tissue source for both synthesis and phosphorylation, 0.14M-NaCl soluble protein showed the activity as high as or even higher than the acidic chromatin protein. Both [3H]leucine incorporation and [32P]phosphate incorporation were relatively low in histone. When the acidic chromatin protein was further fractionated with SDS-acrylamide gel electrophoresis, significant difference was found between CNS tissue and liver for synthesis and phosphorylation. However, considerable difference was also observed even between cerebral cortex and cerebellum. The present investigation demonstrated complicity and diversity of nuclear chromatin proteins in different organs, not only for their protein constituents but also for their synthesis and phosphorylation.  相似文献   

18.
Sea urchin sperm plasma membranes isolated from heads and flagella were used to examine the presence of Gs (stimulatory guanine nucleotide-binding regulatory protein) and small G-proteins. Flagellar plasma membranes incubated with [32P]NAD and cholera toxin (CTX) displayed radiolabeling in a protein of 48 kDa, which was reactive by immunoblotting with a specific antibody against mammalian Gs. CTX-catalyzed [32P]ADP-ribosylation in conjunction with immunoprecipitation with anti-Gs, followed by electrophoresis and autoradiography, revealed one band of 48 kDa. Head plasma membranes, in contrast, did not show substrates for ADP-ribosylation by CTX. In flagellar and head plasma membranes pertussis toxin (PTX) ADP-ribosylated the same protein described previously in membranes from whole sperm; the extent of ADP-ribosylation by PTX was higher in flagellar than in head membranes. Small G-proteins were investigated by [32P]GTP-blotting. Both head and flagellar plasma membranes showed three radiolabeled bands of 28, 25 and 24 kDa. Unlabeled GTP and GDP, but not other nucleotides, interfered with the [α-32P]GTP-binding in a concentration-dependent manner. A monoclonal antibody against human Ras p21 recognized a single protein of 21 kDa only in flagellar membranes. Thus, sea urchin sperm contain a membrane protein that shares characteristics with mammalian Gs and four small G-proteins, including Ras . Gs, Gi and Ras are enriched in flagellar membranes while the other small G-proteins do not display a preferential distribution along the sea urchin sperm plasma membrane. The role of these G-proteins in sea urchin sperm is presently under investigation.  相似文献   

19.
Abstract: Proteins of the paniculate fraction of sciatic nerve of rats ranging from 1 to 55 days of age were analyzed by polyacrylamide gel electrophoresis. The major myelin protein, P0, could not be detected at 1 day of age, but by 10 days it comprised from 15 to 20% of the particulate protein, the same proportion as in adult rats. Growth of nerve continued throughout the period studied. Rat sciatic nerves were incubated with [32P]orthophosphate or [3H]fucose. Particulate matter proteins from sciatic nerve (and in certain cases proteins of myelin purified from sciatic nerve) were separated by polyacrylamide disc gel electrophoresis and the distribution of protein and of radioactivity along the gels was determined. [32P]Phosphate appeared to label all myelin proteins. Labeling with fucose was more specific; myelin basic proteins were not fucosylated. A developmental study showed that sciatic nerves from 2-day-old rats could incorporate radioactive fucose and [32P]-phosphate into several proteins at the P0 region of polyacrylamide gels. Specific radioactivity of [3H]fucose in P0 protein was highest in preparations from 5-day-old rats and declined by 80% over the next 5 days as it was diluted by accumulating myelin. The specific radioactivity of incorporated [32P] phosphate was high at the early age points and declined as a result of the accumulation of compact myelin. The results indicate an association of fucosylation and/or phosphorylation with some step in the formation of myelin.  相似文献   

20.
Molecular cloning of aromatic degradative genes from Pseudomonas stutzeri   总被引:4,自引:0,他引:4  
Abstract Using dialysed cell-free extracts of the purple non-sulphur bacterium Rhodomicrobium vannielii protein kinase activities capable of transferring the gamma phosphate group from gamma [32P]ATP to a variety of polypeptides were detected. The optimum concentration of Mg2+ for protein kinase activity was about 20 mM and the phosphorylation of one polypeptide ( M r 47 kDa) was inhibited by chlorpromazine, a calmodulin antagonist, and also by Ca2+. The activity of at least one of the protein kinases (or a phosphatase) was regulated by ribulose 1,5-bisphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号