首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

A horizontal dilute-phase pneumatic conveying system using vertically oscillating soft fins at the inlet of the gas–particle mixture was studied to reduce the power consumption and conveying velocity in the conveying process. The effect of different fin lengths on horizontal pneumatic conveying was studied in terms of the pressure drop, conveying velocity, power consumption, particle velocity, and intensity of particle fluctuation velocity for the case of a low solid mass flow rate. The conveying pipeline consisted of a horizontal smooth acrylic tube with an inner diameter of 80 mm and a length of approximately 5 m. Two types of polyethylene particles with diameters of 2.3 and 3.3 mm were used as conveying materials. The superficial air velocity was varied from 10 to 17 m/s, and the solid mass flow rates were 0.25 and 0.20 kg/s. Compared with conventional pneumatic conveying, the pressure drop, MPD (minimum pressure drop), critical velocities, and power consumption can be reduced by using soft fins in a lower air velocity range, and the efficiency of fins becomes more evident when increasing the length of fins or touching particles stream by the long fins. The maximum reduction rates of the MPD velocity and power consumption when using soft fins are approximately 15% and 26%, respectively. The magnitude of the vertical particle velocity for different lengths of fins is clearly lower than that of the vertical particle velocity for a non-fin conveying system near the bottom of the pipeline, indicating that the particles are easily suspended. The intensities of particle fluctuation velocity of using fins are larger than that of non-fin. The high particle fluctuation energy implies that particles are easily suspended and are easily conveyed and accelerated.  相似文献   

2.
A differential equation of motion for gas-flour two-phase flow in a vertical pipe was first derived based on the momentum conservation and by adopting two empirical expressions for the velocity ratio of flour to gas and frictional coefficient between flour and pipe wall, and then a pressure drop model for dilute positive pneumatic conveying of flour through a vertical pipeline was developed by employing the continuity and state equations for gas. The conveying tests were conducted on a positive pneumatic conveying system of flour in a flour mill. Under each of the six different flow conditions, the conveying parameters, such as the flour and gas mass flow rates and the pressure drop between two selected cross sections on the vertical pipeline were measured. The pressure drop between the two selected cross sections was evaluated using the pressure drop model for each of the six flow conditions. The calculated values of pressure drop agree well with the measured data, and it is demonstrated that the model is applicable to vertical positive pneumatic conveying systems of flour.  相似文献   

3.
Based on the coal self-preheating combustion technology, this research proposed a novel internal fluidized bed combustor (IFBC) with an internal separator for stable preheating of fuel. In order to verify feasibility and operation stability of IFBC, cold experiment, electrical capacitance tomography (ECT) and computational particle fluid dynamic (CPFD) simulation were performed in a laboratory-scale IFBC. The effects of superficial air velocity (Ug) and return valve structure on the operation and gas-solid flow characteristics were investigated. The results revealed that the CPFD prediction agreed well with the experiment values. The pressure balance curve presented an “8″ shape distribution, and the particle volume fraction (PVF) showed ‘core-annular’ distribution features. With the increase of Ug, the PVF in the standpipe increased, and the discharge pattern of the return valve changed from continuous discharge to intermittent discharge, and the solid circulation flux showed a trend of increasing first and then decreasing. With the decrease of the outlet opening of return valve (Φ), the gas–solid flow behavior in standpipe experienced a transition from gas leakage, stabilizing material seal, and blocking state. For Ug = 2 m/s, Φ = 50 %, an effective solid seal in the return valve was established and IFBC has a stable circulation and operation.  相似文献   

4.
李宁  向德华  周艳  朱宁  陈炜骄  徐旷宇 《计量学报》2021,42(8):1012-1017
针对pVTt法气体流量标准装置中开关阀影响喷嘴流出系数的测量结果的问题,分析了pVTt法气体流量标准装置中高真空蝶阀和高真空球阀的流通面积与开度的关系,分别推导了2种阀门的质量流量随时间变化的计算公式, 并计算了2种阀门最佳的计时位置。 设计了一套实验装置对2种阀门最佳的计时位置进行了验证, 结果表明:所用蝶阀和球阀的最佳计时点分别位于阀门打开4.5°和2.5°的位置。  相似文献   

5.
CO2 flow condensation heat transfer coefficients and pressure drop are investigated for 0.89 mm microchannels at horizontal flow conditions. They were measured at saturation temperatures of −15 and −25 °C, mass fluxes from 200 to 800 kg m−2 s−1, and wall subcooling temperatures from 2 to 4 °C. Flow patterns for experimental conditions were predicted by two flow pattern maps, and it could be predicted that annular flow patterns could exist in most of flow conditions except low mass flux and low vapor quality conditions. Measured heat transfer coefficients increased with the increase of mass fluxes and vapor qualities, whereas they were almost independent of wall subcooling temperature changes. Several correlations could predict heat transfer coefficients within acceptable error range, and from this comparison, it could be inferred that the flow condensation mechanism in 0.89 mm channels should be similar to that in large tubes. CO2 two-phase pressure drop, measured in adiabatic conditions, increased with the increase of mass flux and vapor quality, and it decreased with the increase of saturation temperature. By comparing measured pressure drop with calculated values, it was shown that several correlations could predict the measured values relatively well.  相似文献   

6.
The selection and adjustment of an effective abrasive mass flow rate is one of the most important requirements for efficient blast-cleaning processes. Steel grit is one of the most widely used abrasive materials in the industry, and the adjustment of effective steel grit mass flow rates can improve efficiency and decrease costs. Systematic investigations into the metering behavior of steel grit have not been performed yet. The paper deals with a systematic investigation into the flow of high-carbon cast-steel grit particles through a metering valve. The investigation involves abrasive mass flow rate measurements, and the results are statistically interpreted based on design of experiments and analysis of variance. Four process parameters are varied, namely static air pressure, nozzle diameter, valve opening, and particle size range. Abrasive mass flow rate increases if air pressure, nozzle diameter, or valve opening increases, and it decreases if particle size becomes smaller. Only valve opening and nozzle diameter provide statistically significant effects. Interaction effects are statistically insignificant for all parameter combinations. It is concluded that a three-parameter linear regression model is suitable to statistically describe the relationships in the scope of the evaluation effort.  相似文献   

7.
The pressure drop of a bubbling fluidized-bed that employed an in-bed inlet and an overflow outlet for continuous flow of solid particles was investigated with variation in the particle size and density, the solid flow rate and the gas velocity. The bed pressure drop decreased with increasing the gas velocity, but increased with the solid flow rate. The characteristics in lifting the solid particles vertically to the level of the overflow outlet by bubbles appeared different from the ones of particle entrainment and bed expansion. Regardless of size and density of particles, bed height in minimum fluidizing condition (pressure head by solid bed weight, Hmf,f) decreased with increasing the volume flow rate of bubble but increased with the mass flow rate of solid particles. The nominal vertical height from Hmf,f to the level of the overflow outlet that the particles should overcome in the course of discharging out of the fluidized-bed with the aid of bubbles increased as either the volume flow rate of bubble increased or the mass flow rate of solid particles decreased. The power consumed while bubbles lifted particles to be discharged appeared to be same at the fixed volume flow rate of bubble. A correlation was proposed successful even for predicting the bed pressure drop of the recycle chamber of the loop seal and the external solid circulation rate in the circulating fluidized-bed system.  相似文献   

8.
There have been numerous correlations proposed for determining a solids friction factor ( λs ) for fully suspended (dilute phase) pneumatic conveying. Currently, there are no equivalent correlations that predict λs in nonsuspension dense-phase flows. In dense-phase conveying there are two basic modes of flow: plug/slug flow, which is predominantly based on granular products, and fluidized dense-phase flow, which is more suited to fine powders exhibiting good air retention capabilities. In plug/slug type flow, the stresses between the moving plug of material and the pipe wall dominate the solid-phase frictional losses. In fluidized dense-phase flow the frictional losses are characterized as a mixture of particle-wall and particle-particle losses but are heavily influenced by the gas-solid interactions. In this paper, a series of calculations were performed on experimental data in order to estimate λs for four types of material conveyed in the fluidized dense-phase flow regime. The solids frictional factors were found to be relatively independent of particle properties for varying air and solid mass flow rates and pressure drops. The resultant pressure drop from the empirical model showed good agreement with the experimental data.  相似文献   

9.
ABSTRACT

This article presents a two-dimensional study of the gas-solid flow in a vertical pneumatic conveying pipe by means of a hard-sphere model where the motion of individual particles can be traced. Simulations were performed for a pipe of height 0.9 m and width 0.06 m, with air as gas phase and particles of density 900 kg/m3 and diameter 0.003 m as solid phase. Periodic boundary conditions were applied to the solid phase in the axial direction. Different cases were simulated to examine the effects of the number of particles used, superficial gas velocity, and restitution coefficient. The results show that the main features of plug flow can be reasonably captured by the proposed simulation technique. That is, increasing the number of particles in a simulation will increase the length of plugs but does not change the velocity of plugs; the solid fraction of a plug is relatively low if the number of particles is small. In particular, it is shown that increasing superficial gas velocity will increase the velocity of plugs and the frequency of plugs, and the pressure drop through a rising plug increases linearly with the plug length, suggesting that the total pressure of a conveying system with a given length can be quantified from the information of plug length and plug frequency. Increasing the restitution coefficient can promote the momentum transfer between particles and hence the raining down of particles from the back of a plug in vertical pneumatic conveying. The simulation offers a useful technique to understand the fundamentals governing the gas-solid flow under pneumatic conveying conditions.  相似文献   

10.
采用实验方法,对旋进漩涡流量计-锥形阀组合式流量调节装置的流量测量与调节特性,进行了研究.首先在有无锥形阀情况下,对旋进漩涡流量计的输出特性进行了测试,发现无论上游有无锥形阀,所测得压力信号的脉动频率与流量之间均呈现良好的线性关系,且同一流量时,锥形阀的存在引起的压力脉动频率变化小于5%.测量结果说明,在这种组合式的流量调节装置中,旋进漩涡流量计能够正常工作.装置的流量调节特性测试中,在进口压力为0.11~0.23MPa、阀芯行程0~8mm的范围内,测量了流量的变化情况.结果发现,进口压力不变时,流量随着开度的增大而增大,流量与开度之间呈线性关系;当进口压力增大时,通过的流量也增大;反之亦然.  相似文献   

11.
Simulation of Gas-Solid Flow in Vertical Pipe by Hard-Sphere Model   总被引:1,自引:0,他引:1  
This article presents a two-dimensional study of the gas-solid flow in a vertical pneumatic conveying pipe by means of a hard-sphere model where the motion of individual particles can be traced. Simulations were performed for a pipe of height 0.9 m and width 0.06 m, with air as gas phase and particles of density 900 kg/m3 and diameter 0.003 m as solid phase. Periodic boundary conditions were applied to the solid phase in the axial direction. Different cases were simulated to examine the effects of the number of particles used, superficial gas velocity, and restitution coefficient. The results show that the main features of plug flow can be reasonably captured by the proposed simulation technique. That is, increasing the number of particles in a simulation will increase the length of plugs but does not change the velocity of plugs; the solid fraction of a plug is relatively low if the number of particles is small. In particular, it is shown that increasing superficial gas velocity will increase the velocity of plugs and the frequency of plugs, and the pressure drop through a rising plug increases linearly with the plug length, suggesting that the total pressure of a conveying system with a given length can be quantified from the information of plug length and plug frequency. Increasing the restitution coefficient can promote the momentum transfer between particles and hence the raining down of particles from the back of a plug in vertical pneumatic conveying. The simulation offers a useful technique to understand the fundamentals governing the gas-solid flow under pneumatic conveying conditions.  相似文献   

12.
This paper presents an overview of the issues and new results for in-tube condensation of ammonia in horizontal round tubes. A new empirical correlation is presented based on measured NH3 in-tube condensation heat transfer and pressure drop by Komandiwirya et al. [Komandiwirya, H.B., Hrnjak, P.S., Newell, T.A., 2005. An experimental investigation of pressure drop and heat transfer in an in-tube condensation system of ammonia with and without miscible oil in smooth and enhanced tubes. ACRC CR-54, University of Illinois at Urbana-Champaign] in an 8.1 mm aluminum tube at a saturation temperature of 35 °C, and for a mass flux range of 20–270 kg m−2 s−1. Most correlations overpredict these measured NH3 heat transfer coefficients, up to 300%. The reasons are attributed to difference in thermophysical properties of ammonia compared to other refrigerants used in generation and validation of the correlations. Based on the conventional correlations, thermophysical properties of ammonia, and measured heat transfer coefficients, a new correlation was developed which can predict most of the measured values within ±20%. Measured NH3 pressure drop is shown and discussed. Two separated flow models are shown to predict the pressure drop relatively well at pressure drop higher than 1 kPa m−1, while a homogeneous model yields acceptable values at pressure drop less than 1 kPa m−1. The pressure drop mechanism and prediction accuracy are explained though the use of flow patterns.  相似文献   

13.
This paper proposes a new oscillating flow model of the pressure drop in oscillating flow through regenerator under pulsating pressure. In this oscillating flow model, pressure drop is represented by the amplitude and the phase angle with respect to the inlet mass flow rate. In order to generalize the oscillating flow model, some non-dimensional parameters, which consist of Reynolds number, Valensi number, gas domain length ratio, oscillating flow friction factor and phase angle of pressure drop, are derived from a capillary tube model of the regenerator. Two correlations in the model are obtained from the experiments for the twill square screen regenerators under various operating frequencies and inlet mass flow rates. It is found that the oscillating flow friction factor is a function of Reynolds number while the phase angle of pressure drop is a function of Valensi number and the gas domain length ratio. Experiment also shows the effect of the mesh weave style on the oscillating flow friction factor and the phase angle. Proposed oscillating flow model can accurately describe the amplitude and the phase angle of the pressure drop through the regenerator.  相似文献   

14.
The heat transfer coefficient and pressure drop during gas cooling process of CO2 (R744) in a horizontal tube were investigated experimentally. The experiments are conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and a gas cooler (test section). The water loop consists of a variable speed pump, an isothermal tank, and a flow meter. The refrigerant, circulated by the variable-speed pump, condenses in the inner tube while water flows in the annulus. The gas cooler of tube diameter is 6000 mm in length, and it is divided into 12 subsections.The pressure drop of CO2 in the gas cooler shows a relatively good agreement with those predicted by Blasius's correlation. The local heat transfer coefficient of CO2 agrees well with the correlation by Bringer–Smith. However, at the region near Pseudo-critical temperature, the experiments indicate higher values than the Bringer–Smith correlation. Based on the experimental data presented in this paper, a new correlation to predict the heat transfer coefficient of supercritical CO2 during in-tube cooling has been developed. The majority of the experimental values are within 18% of the values predicted by the new correlation.  相似文献   

15.
The minimum transport or capacity limitation boundary for low-velocity slug-flow pneumatic conveying affects the design and operation of conveying systems. Unfortunately, the relevant mechanisms involved with this boundary still lack full understanding and assessment. Investigations have been carried out to model the capacity limitation for the low-velocity slug-flow pneumatic conveying of poly granules through horizontal pipes. Pipeline diameter, air mass flow rate, and operating pressure have been found to affect the maximum slugging capacity of this material. A semiempirical equation has been established to predict the maximum solids mass flow rate for a given air mass flow rate and conveying pipeline. Good agreement has been achieved between the model predictions and the experimental results over a wide range of airflows and pressures.  相似文献   

16.
The minimum transport or capacity limitation boundary for low-velocity slug-flow pneumatic conveying affects the design and operation of conveying systems. Unfortunately, the relevant mechanisms involved with this boundary still lack full understanding and assessment. Investigations have been carried out to model the capacity limitation for the low-velocity slug-flow pneumatic conveying of poly granules through horizontal pipes. Pipeline diameter, air mass flow rate, and operating pressure have been found to affect the maximum slugging capacity of this material. A semiempirical equation has been established to predict the maximum solids mass flow rate for a given air mass flow rate and conveying pipeline. Good agreement has been achieved between the model predictions and the experimental results over a wide range of airflows and pressures.  相似文献   

17.
A novel circulating granular bed filter with conical louver plates (CGBF-CLPs) was designed to remove dust particulates from the flue gas stream of a coal power plant. The purpose of this investigation was to evaluate the performance of the CGBF-CLPs. Dust collection efficiency and pressure drop data were analyzed to determine better operating conditions. The effect of solid mass flow rate, collector particle size and dust/collector particles separator types on the dust collection efficiency and pressure drop in the CGBF-CLPs were investigated in this study. The solid mass flow rate (B) varied from 15.59+/-0.44 to 20.36+/-0.68 g s(-1) and the initial average collector particle sizes were 1500 and 795 microm, respectively. Two types of separators, a cyclone and an inertial one, for separating the dust and collector particles were used in the CGBF-CLPs system. An Air Personal Sampler (SKC PCXR8) was used to determine the inlet and outlet dust concentrations. A differential pressure transmitter and data acquisition system were used to measure the pressure drop. Experimental results showed that the highest dust collection efficiency was 99.59% when the solid mass flow rate was 17.08+/-0.48 g s(-1) and the initial average collector particle size was 795 microm with the cyclone type separator. The results showed that the attrition fines of the original collector particles returning to the granular bed filter (GBF) reduced bed voidage. This phenomenon significantly increased the dust collection efficiency in the CGBF-CLPs. As a consequence, a bigger bed voidage creates a lower dust collection efficiency in the GBF.  相似文献   

18.
This study is aimed at shedding light on the influence laws of air inlet position, air inlet area and cleaning chamber. To achieve this aim, first, the influences of air inlet position on pressure drop, air flow rate and mass of coal dust collected on the filter cartridges were investigated with the aid of a homemade experimental system. In addition, the effects of air inlet area on dynamic pressure and air flow rate of the air inlet were evaluated. Furthermore, the velocity within 30 cm in front of the air inlet was tested for determining the effective suction range. Finally, the impacts of cleaning chamber height on pressure drop and air flow rate of the cartridge filter were demonstrated. The research is expected to provide guidance for the setting of the air inlet and the cleaning chamber of the cartridge filter.  相似文献   

19.
This paper presents experiments and modeling of the most recent set of liquid acquisition device (LAD) vertical outflow tests conducted in liquid hydrogen. The Engineering Development Unit (EDU) was a relatively large tank (4.25 m3) used to mimic a storage tank for a cryogenic storage and transfer flight demonstration test. Six 1-g propellant tank outflow tests were conducted with a standard 325 × 2300 rectangular cross-section curved LAD channel conformal to the tank walls over a range of tank pressure (158–221 kPa), ullage temperature (22–39 K), and mass flow rate (0.0103–0.0187 kg/s) per arm. An analytical LAD channel solver, an exact solution to the Navier-Stokes equations, is used to model propellant outflow for the LAD channel. Results shows that the breakdown height of the LAD is dominated by liquid and ullage gas temperatures, with a secondary effect of flow rate. The best performance is always obtained by exposing the channel to cold pressurant gas and low flow rates, consistent with the cryogenic bubble point model. The model tracks the trends in the data and shows that the contribution of flow-through-screen pressure drop is minimized for bottom outflow in 1-g, versus the standard inverted outflow.  相似文献   

20.
《Advanced Powder Technology》2019,30(11):2564-2573
The effect of level of the overflow outlet for continuous flow of solid particles on the pressure drop of a bubbling fluidized-bed that employed an in-bed inlet for solid feed was investigated with changing solid properties, solid feed rate, gas velocity, and level of the overflow outlet. The pressure drop of fluidized-bed (Δpbed,f) decreased with increasing gas velocity, but increased with either solid feed rate or level of the overflow solid outlet (L). The Δpbed,f/L increased with L. Irrespective of particle size and density, bed height converted for minimum fluidization condition (pressure head by bed weight, Hmf,f) decreased with increasing the volume flow rate of bubble but increased with either the solid feed rate or the level of the overflow solid outlet. The nominal vertical height, height between the Hmf,f and the level of the overflow outlet, that bubbles transported particles while drawing the solid particles out of the fluidized-bed increased as either the volume flow rate of bubble or level of the overflow outlet increased. However, it decreased as the solid feed rate increased. It appeared that the power of bubble for lifting solid to be discharged through the overflow outlet was same at the fixed volume flow rate of bubble, solid feed rate, and level of the overflow solid exit. The power of bubble increased with the level of the overflow outlet but not linearly. The correlation proposed for the pressure drop across the bubbling fluidized-bed was useful to predict the pressure drop across the recycle chamber of the loop seal and the external solid circulation rate in the circulating fluidized-bed system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号