首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Aluminum nitride films were deposited, at 200 °C, on silicon substrates by RF sputtering. Effects of rapid thermal annealing on these films, at temperatures ranging from 400 to 1000 °C, have been studied. Fourier transform infrared spectroscopy (FTIR) revealed that the characteristic absorption band of Al–N, around 684 cm−1, became prominent with increased annealing temperature. X-ray diffraction (XRD) patterns exhibited a better, c-axis, (0 0 2) oriented AlN films at 800 °C. Significant rise in surface roughness, from 2.1 to 3.68 nm, was observed as annealing temperatures increased. Apart from these observations, micro-cracks were observed at 1000 °C. Insulator charge density increased from 2×1011 to 7.7×1011 cm−2 at higher temperatures, whereas, the interface charge density was found minimum, 3.2×1011 eV−1cm−2, at 600 °C.  相似文献   

2.
This work is an attempt to estimate the electrical properties of SiO2 thin films by recording and analyzing their infrared transmission spectra. In order to study a big variety of films having different infrared and electrical properties, we studied SiO2 films prepared by low pressure chemical vapor deposition (LPCVD) from SiH4 + O2 mixtures at 425 °C and annealed at 750 °C and 950 °C for 30 min. In addition thermally grown gate quality SiO2 films of similar thickness were studied in order to compare their infrared and electrical properties with the LPCVD oxides. It was found that all studied SiO2 films have two groups of Si–O–Si bridges. The first group corresponds to bridges located in the bulk of the film and far away from the interfaces, the grain boundaries and defects and the second group corresponds to all other bridges located near the interfaces, the grain boundaries and defects. The relative population of the bulk over the boundary bridges was found equal to 0.60 for the LPCVD film after deposition and increased to 4.0 for the LPCVD films after annealing at 950 °C. Thermally grown SiO2 films at 950 °C were found to have a relative population of Si–O–Si bridges equal to 3.9. The interface trap density of the LPCVD film after deposition was found equal to 5.47 × 1012 eV−1 cm−2 and decreases to 6.50 × 1010 eV−1 cm−2 after annealing at 950 °C for 30 min. The interface trap density of the thermally grown film was found equal to 1.27 × 1011 eV−1 cm−2 showing that films with similar Si–O–Si bridge populations calculated from the FTIR analysis have similar interface trap densities.  相似文献   

3.
Silicon dioxide films have been deposited at temperatures less than 270 °C in an electron cyclotron resonance (ECR) plasma reactor from a gas phase combination of O2, SiH4 and He. The physical characterization of the material was carried out through pinhole density analysis as a function of substrate temperature for different μ-wave power (Ew). Higher Ew at room deposition temperature (RT) shows low defects densities (<7 pinhole/mm2) ensuring low-temperatures process integration on large area. From FTIR analysis and Thermal Desorption Spectroscopy we also evaluated very low hydrogen content if compared to conventional rf-PECVD SiO2 deposited at 350 °C. Electrical properties have been measured in MOS devices, depositing SiO2 at RT. No significant charge injection up to fields 6–7 MV/cm and average breakdown electric field >10 MV/cm are observed from ramps IV. Moreover, from high frequency and quasi-static CV characteristics we studied interface quality as function of annealing time and annealing temperature in N2. We found that even for low annealing temperature (200 °C) is possible to reduce considerably the interface state density down to 5 × 1011 cm−2 eV−1. These results show that a complete low-temperatures process can be achieved for the integration of SiO2 as gate insulator in polysilicon TFTs on plastic substrates.  相似文献   

4.
Metal-oxide-semiconductor capacitors based on HfO2 gate stack with different metal and metal compound gates (Al, TiN, NiSi and NiAlN) are compared to study the effect of the gate electrode material on the trap density at the insulator–semiconductor interface.CV and Gω measurements were made in the frequency range from 1 kHz to 1 MHz in the temperature range 180–300 K. From the maximum of the plot G/ω vs. ln(ω) the density of interface states was calculated, and from its position on the frequency axis the trap cross-section was found. Reducing temperature makes it possible to decrease leakage current through the dielectric and to investigate the states located closer to the band edge.The structures under study were shown to contain significant interface trap densities located near the valence band edge (around 2×1011 cm−2eV−1 for Al and up to (3.5–5.5)×1012 cm−2 eV−1 for other gate materials). The peak in the surface state distribution is situated at 0.18 eV above the valence band edge for Al electrode. The capture cross-section is 5.8×10−17 cm2 at 200 K for Al–HfO2–Si structure.  相似文献   

5.
Strontium tantalate (STO) films were grown by liquid-delivery (LD) metalorganic chemical vapor deposition (MOCVD) using Sr[Ta(OEt)5(OC2H4OMe)]2 as precursor. The deposition of the films was investigated in dependence on process conditions, such as substrate temperature, pressure, and concentration of the precursor. The growth rate varied from 4 to 300 nm/h and the highest rates were observed at the higher process temperature, pressure, and concentration of the precursor. The films were annealed at temperatures ranging from 600 to 1000 °C. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and ellipsometry indicated that the as-deposited and the annealed films were uniform and amorphous and a thin (>2 nm) SiO2 interlayer was found. Crystallization took place at temperatures of about 1000 °C. Annealing at moderate temperatures was found to improve the electrical characteristics despite different film thickness (effective dielectric constant up to 40, the leakage current up to 6×10−8 A/cm2, and lowest midgap density value of 8×1010 eV−1 cm−2) and did not change the uniformity of the STO films, while annealing at higher temperatures (1000 °C) created voids in the film and enhanced the SiO2 interlayer thickness, which made the electrical properties worse. Thus, annealing temperatures of about 800 °C resulted in an optimum of the electrical properties of the STO films for gate dielectric applications.  相似文献   

6.
The defects induced by inductively coupled plasma reactive ion etching (ICP-RIE) on a Si-doped gallium nitride (GaN:Si) surface have been analyzed. According to the capacitance analysis, the interfacial states density after the ICP-etching process may be higher than 5.4 × 1012 eV−1 cm−2, compared to around 1.5 × 1011 eV−1 cm−2 of non-ICP-treated samples. After the ICP-etching process, three kinds of interfacial states density are observed and characterized at different annealing parameters. After the annealing process, the ICP-induced defects could be reduced more than one order of magnitude in both N2 and H2 ambient. The H2 ambient shows a better behavior in removing ICP-induced defects at a temperature around 500 °C, and the interfacial states density around 2.2 × 1011 eV−1 cm−2can be achieved. At a temperature higher than 600 °C, the N2 ambient provides a much more stable interfacial states behavior than the H2 ambient.  相似文献   

7.
ZrO2 thin films with a smooth surface were synthesized on silicon by atomic vapor deposition™ using Zr[OC(CH3)3]4 as precursor. The maximum growth rate (7 nm min−1) and strongest crystalline phase were obtained at 400 °C. The increase of the deposition temperature reduced the deposition rate to 0.5 nm min−1 and changed the crystalline ZrO2 phase from cubic/tetragonal to monoclinic. These films showed no enhancement of the dominating monoclinic phase by annealing. The values of the dielectric constant (up to 32) and leakage current density (down to 1.2×10−6 A cm−2 at 1×106 V cm−1) varied depending on the deposition temperature and film thickness. The midgap density of interface states was Nit=5×1011 eV−1 cm−2. The leakage current and the density of interface states were lowered by the annealing to 10−7 A cm−2 at 1×106 V cm−1 and to 1010 eV−1 cm−2, respectively. However, this also led to a decrease of the dielectric constant.  相似文献   

8.
Results of a study of electrically active defects induced in Sb-doped Ge crystals by implantations of hydrogen and helium ions (protons and alpha particles) with energies in the range from 500 keV to 1 MeV and doses in the range 1×1010–1×1014 cm−2 are presented in this work. Transformations of the defects upon post-implantation isochronal anneals in the temperature range 50–350 °C have also been studied. The results have been obtained by means of capacitance–voltage (CV) measurements and deep-level transient spectroscopy (DLTS).It was found from an analysis of DLTS spectra that low doses (<5×1010 cm−2) of H and He ion implantations resulted in the introduction of damage similar to that observed after MeV electron irradiation. The Sb–vacancy complex was the dominant deep-level defect in the lightly implanted samples. After implantations with doses higher than 5×1010 cm−2 peaks due to more complex defects were observed in the DLTS spectra. Implantations with heavy (5×1013 cm−2) doses of both H and He ions caused the formation of a sub-surface layer with a high (up to 1×1017 cm−3) concentration of donors. These donors were eliminated by anneals at temperatures in the range 100–200 °C. Heat treatments of the heavy proton-implanted Ge samples in the temperature range 250–300 °C resulted in the formation of shallow hydrogen-related donors, the concentration of which was the highest in a region close to the projected depth of implanted protons. The maximum peak concentration of the H-related donors was higher than 1×1015 cm−3 for a proton implantation dose of 1×1014 cm−2.  相似文献   

9.
Hydrogen is readily incorporated into bulk, single-crystal ZnO during exposure to plasmas at moderate (100–300°C) temperatures. Incorporation depths of >25 μm were obtained in 0.5 h at 300°C, producing a diffusivity of 8 × 10−10 cm2/V s at this temperature. The activation energy for diffusion is 0.17 ± 0.12 eV, indicating an interstitial mechanism. Subsequent annealing at 500–600 °C is sufficient to evolve all of the hydrogen out of the ZnO, at least to the sensitivity of Secondary Ion Mass Spectrometry (<5 × 1015 cm−3). The thermal stability of hydrogen retention is slightly greater when the hydrogen is incorporated by direct implantation relative to plasma exposure, due to trapping at residual damage.  相似文献   

10.
The reliability of AlInAs/GaInAs high electron mobility transistor (HEMT) monolithic microwave integrated circuits on InP substrates from HRL Labs has been studied with elevated-temperature lifetests on Ka-band LNAs, as well as ramped-voltage tests on individual capacitors. In the lifetests the LNAs were put under normal DC bias, and aging was accelerated by heating to channel temperatures of 190°C and 210°C. Room-temperature characterizations involved DC tests of HEMT parameters as well as 30 GHz measurements of gain, noise figure and phase. Aging caused the noise figure to drop by a few tenths of a dB, and the phase changed by ±10°. The gain dropped gradually by several dB. Taking 1 dB drop in gain as the failure criterion, we find an activation energy of 1.1 eV, and a mean time to failure (MTTF) at an operating channel temperature of 70°C of 7×106 h. In the ramped-voltage tests, 10×10 μm2 capacitors were taken to breakdown at two different temperatures, and several ramp rates. This yielded a voltage acceleration factor of γ=36–39 nm/V, and thermal activation energy of 0.11–0.13 eV. Next, ramped voltage tests were conducted on 200×200 μm2 capacitors, typical of those in circuits. These were done at 25°C and 3.0 V/s only, and at least 1000 specimens were tested per wafer. The known acceleration factors were used to find the MTTFs at 70°C, with operating biases of 5 or 10 V. For the majority of the population the MTTFs are about 109 h, while only 0.07% of the population has MTTF less than 1×106 h. The combination of results from elevated-temperature lifetests and ramped-voltage capacitor tests indicates excellent reliability for this MMIC technology in terms of known “wearout” failure mechanisms.  相似文献   

11.
MOS capacitors were produced on n-type 4H-SiC using oxidized polycrystalline silicon (polyoxide). The polyoxide samples grown by dry oxidation without an anneal had a high interface state density (Dit) of 1.8 × 1012 cm−2 eV−1 and the polyoxide samples grown by wet oxidation had a lower Dit of 1.2 × 1012 cm−2 eV−1 (both at 0.5 eV below the conduction band). After 1 h Ar annealing, the Dit of wet polyoxide was reduced significantly to 2.6 × 1011 cm−2 eV−1 (at 0.5 eV below the conduction band). Dry polyoxide exhibits higher breakdown electric fields than wet polyoxide. The interface quality and breakdown characteristics of polyoxide are comparable to published results of low-temperature CVD deposited oxides.  相似文献   

12.
Metal–oxide–semiconductor (MOS) capacitors based on HfO2 gate stacks with Al and TiN gates are compared to study the effect of the gate electrode material to the properties of insulator–semiconductor interface. The structures under study were shown to contain interface trap densities of around 2 × 1011 cm−2 eV−1 for Al gate and up to 5.5 × 1012 cm−2 eV−1 for TiN gate. The peak in the surface state distribution was found at 0.19 eV above the valence band edge for Al electrode. The respective capture cross-section is 6 × 10−17 cm2 at 200 K.The charge injection experiments have revealed the presence of hole traps inside the dielectric layer. The Al-gate structure contains traps with effective capture cross-section of 1 × 10−20 cm2, and there are two types of traps in the TiN-gate structure with cross-sections of 3.5 × 10−19 and 1 × 10−20 cm2. Trap concentration in the structure with Al electrode was considerably lower than in the structure with TiN electrode.  相似文献   

13.
Aluminium nitride (AlN) thin films were deposited by radio frequency (RF) magnetron sputtering on p-type silicon (Si) substrate of (1 0 0) orientation using only argon (Ar) gas at substrate temperature of 300 °C. In order to achieve improved electrical properties, we performed post-deposition rapid thermal annealing (RTA). Sputtered AlN films were annealed in an oxygen ambient at temperatures of 600, 700, and 800 °C using RTA for 30 min. The orientation of the AlN crystal in the film was investigated using X-ray diffraction (XRD). The characteristic spectra by functional group were analyzed by Fourier transformation infrared (FTIR) spectroscopy. The electrical properties of the AlN thin films were studied through capacitance–voltage (C–V) characteristics in metal–insulator–semiconductor (MIS) device using the films as insulating layers. The flatband voltages (VFB) in C–V curves were found to depend on crystal orientations. Negative VFB was found in the case when AlN (1 0 0) peak was found. Also, when AlN (1 0 3) peak was observed upon increasing the annealing temperature, the value of VFB was positive and after annealing at 700 °C, AlN (1 0 3) peak intensity was found to be maximum and VFB was as high as+6.5 V.  相似文献   

14.
A reliability study has been conducted on capacitors made with 100 nm of silicon nitride, in an InP HEMT MMIC fabrication process. Special wafers were fabricated, containing 1482 200 × 200 μm2 capacitors each, and these were probed automatically. They were subject to ramped-voltage stress and the breakdown voltages recorded. On a typical wafer the vast majority of the breakdown voltages are between 50 and 90 V. In addition, IV curves were measured on a small number of specimens from 0 V up to breakdown. This was done in two regimes: above 25 V with a conventional setup, and below 25 V with an ultra-low-current measurement system. These were done at 25 and 175 °C above 25 V, and at 25 °C only below 25 V. The data were fitted well with a model for the conductivity, consisting of ohmic conduction at low voltages and Frenkel–Poole conduction at high voltages. Parameters of the fits included thermal activation energies, the voltage acceleration factor in the Frenkel–Poole model, and deff, the effective thickness of the dielectric at the thinnest point. Analysis invoked the time-dependent dielectric breakdown model, which provides the time to failure as a function of the deff, while deff can be found from the ramped-voltage measurements. From the 10 wafers that have been probed so far, the mean of the distribution of failure times (at 1.5 V, 40 °C) is above 5 × 107 h, and the distribution becomes insignificant below 2 × 106 h. Further, the probability of failure in 10 years at 1.5 V, 40 °C is much less than 1 in 14,600. This indicates that 100 nm silicon nitride capacitors in this technology have good reliability.  相似文献   

15.
The growth of Pr2O3 layers on Si(1 1 1) has been studied by X-ray diffraction, Low-energy electron diffraction (LEED) and atomic force microscopy (AFM). Pr2O3 starts to grow as a 0.6-nm thick layer corresponding to one unit cell of the hexagonal phase (1 ML). The X-ray results indicate that layers thicker than 0.6 nm do not grow with the hexagonal phase. Growth takes place at a sample temperature of 500–550 °C. Annealing of the monolayer in UHV at a temperature above 700 °C leads to the formation of Pr2O3 and PrSi2 islands. Silicide islands are found only at annealing in UHV and do not occur at annealing in oxygen atmosphere of 10−8 mbar. The LEED pattern after heating to 730 °C shows a (2×2) and (√3×√3) superstructure and after heating to 1000 °C a (1×5) superstructure occurs. The superstructures seen in the LEED pattern arise from silicide structures in the area between the islands. The silicide remains on the surface and cannot be removed with flashing to 1100 °C. Further deposition of Pr2O3 on the surface covered with silicide phases does not lead to growth of ordered layers.  相似文献   

16.
Accelerated lifetest results are presented on HBTs with InGaP emitters. An Arrhenius plot indicates the existence of a temperature dependent activation energy, Ea. A low Ea mechanism dominates above Tj 380 °C and a high Ea mechanism dominates at lower temperature. The critical transition temperature between regimes is determined using the method of maximum likelihood. The difference in Ea’s between low and high temperature regimes is statistically significant.A comparison is made between lifetimes determined from at temperature vs. 40 °C data. No significant difference is observed indicating that beta degradation can be monitored at temperature only and cooling to low temperature is not necessary. Other comparisons indicate that junction temperatures up to 367 °C can still provide good estimates of lower temperature behavior.By the method of maximum likelihood, the predicted MTTF at Tj = 125 °C is 7.6 × 109 h with 95% CBs of [6.4 × 108, 8.9 × 1010]. Given the typical industry standard of 1 × 106 h, the reliability requirements are easily met.It is suggested that the standard of 1 × 106 h does not adequately capture failure time variation and that a better specification is in terms of fails in time (FITs). The 10 year average FIT rate at 125 °C is found to be negligible. Assuming a much higher junction temperature of 210 °C, the average failure rate climbs to 5 FITs with an upper 95% confidence bound of 40 FITs.  相似文献   

17.
Er and O co-doped Si structures have been prepared using molecular-beam epitaxy (MBE) with fluxes of Er and O obtained from Er and silicon monoxide (SiO) evaporation in high-temperature cells. The incorporation of Er and O has been studied for concentrations of up to 2×1020 and 1×1021 cm−3, respectively. Surface segregation of Er can take place, but with O co-doping the segregation is suppressed and Er-doped layers without any indication of surface segregation can be prepared. Si1−xGex and Si1−yCy layers doped with Er/O during growth at different substrate temperatures show more defects than corresponding Si layers. Strong emission at 1.54 μm associated with the intra-4f transition of Er3+ ions is observed in electroluminescence (EL) at room temperature in reverse-biased p–i–n-junctions. To optimize the EL intensity we have varied the Er/O ratio and the temperature during growth of the Er/O-doped layer. Using an Er-concentration of around 1×1020 cm−3 we find that Er/O ratios of 1 : 2 or 1 : 4 give higher intensity than 1 : 1 while the stability with respect to breakdown is reduced for the highest used O concentrations. For increasing growth temperatures in the range 400–575°C there is an increase in the EL intensity. A positive effect of post-annealing on the photoluminescence intensity has also been observed.  相似文献   

18.
In this work hafnium oxide (HfO2) was deposited by r.f. magnetron sputtering at room temperature and then annealed at 200 °C in forming gas (N2+H2) and oxygen atmospheres, respectively for 2, 5 and 10 h. After 2 h annealing in forming gas an improvement in the interface properties occurs with the associated flat band voltage changing from −2.23 to −1.28 V. This means a reduction in the oxide charge density from 1.33×1012 to 7.62×1011 cm−2. After 5 h annealing only the dielectric constant improves due to densification of the film. Finally, after 10 h annealing we notice a degradation of the electrical film's properties, with the flat band voltage and fixed charge density being −2.96 V and 1.64×1012 cm−2, respectively. Besides that, the leakage current also increases due to crystallization. On the other hand, by depositing the films at 200 °C or annealing it in an oxidizing atmosphere no improvements are observed when comparing these data to the ones obtained by annealing the films in forming gas. Here the flat band voltage is more negative and the hysteresis on the CV plot is larger than the one recorded on films annealed in forming gas, meaning a degradation of the interfacial properties.  相似文献   

19.
We report measured evolutions of the optical band gap, refractive index and relative dielectric constant of TiO2 films obtained by electron beam gun evaporation and annealed in an oxygen environment. A negative shift of the flat band voltage with increasing annealing temperatures, for any film thickness, is observed. A dramatic reduction of the leakage current by about four orders of magnitude to 5×10−6 A cm−2 (at 1 MV cm−1) after 700°C and 60 min annealing is found for films thinner than 15 nm. The basic carrier transport mechanisms at different ranges of applied voltage such as hopping, space charge limited current and Fowler–Nordheim is established. An equivalent SiO2 thickness in order of 3.5 nm is demonstrated.  相似文献   

20.
Low-temperature carbon monoxide gas sensors based gold/tin dioxide   总被引:2,自引:0,他引:2  
Tin dioxide nanocrystals were synthesized by a precipitation process and then used as the support for 2 wt.% gold/tin dioxide preparation via a deposition–precipitation method, followed by calcination at 200 °C. Thick films were fabricated from gold/tin dioxide powders, and the sensing behavior for carbon monoxide gas was investigated. The gold/tin dioxide was found to be efficient carbon monoxide gas-sensing materials under low operating temperature (83–210 °C). The Au/SnO2 sensor with SnO2 calcined at 300 °C exhibited better CO gas-sensing behavior than the SnO2 calcined at other temperatures. The experimental results indicated the potential use of Au doped SnO2 for CO gas sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号