首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tetrasubstituted polyanions of platinum, palladium, and gold [M(SnB(11)H(11))(4)](x-) (x=6, M=Pd, Pt; x=5, M=Au) have been prepared and characterized by single-crystal X-ray diffraction, elemental analysis, IR, Raman, (11)B, and (119)Sn heteronuclear NMR spectroscopy. In the case of the platinum derivative [Bu(3)MeN](6)[Pt(SnB(11)H(11))(4)] (2) (119)Sn M?ssbauer spectroscopy has been carried out. The isolated salts are stable towards moisture and air and the complexes 2 and 3 were treated with 1,3-bis(diphenylphosphino)propane (dppp) to give the respective substitution products [Bu(3)MeN](2)[(dppp)M(SnB(11)H(11))(2)] (M=Pd, Pt).  相似文献   

2.
N-[2-P(i-Pr)(2)-4-methylphenyl](2)(-) (PNP) pincer complexes of tin(IV) and tin(II), [(PNP)SnCl(3)] (2) and [(PNP)SnN(SiMe(3))(2)] (3), respectively, were prepared and characterized by X-ray diffraction, solution and solid state NMR spectroscopy, and (119)Sn M?ssbauer spectroscopy. Furthermore, (119)Sn cross polarization magic angle spinning NMR spectroscopic data of [Sn(NMe(2))(2)](2) are reported. Compound 2 is surprisingly stable toward air, but attempts to substitute chloride ligands caused decomposition.  相似文献   

3.
The reaction of the benzannulated bisstannylene ligand 2 with Sn O or Pb O generated in situ gave the pincer complexes 3 and 4. Both complexes have been characterized by X-ray diffraction and multinuclear NMR spectroscopy. A divalent state has been found by M?ssbauer spectroscopy for the tin atoms in complexes 3 and 4.  相似文献   

4.
New non-electrolytic triorganotin(IV) derivatives of dipeptides with general formulae R3Sn(HL), where R = Ph and HL = monoanion of glycylisoleucine (H2L-1), valylvaline (H2L-2), alanylvaline (H2L-3), leucylalanine (H2L-4), leucylleucine (H2L-5); R = n-Bu and HL = monoanion of glycylisoleucine (H2L-1) and leucylalanine (H2L-4); and R = Me and HL = monoanion of leucylalanine (H2L-4) have been synthesized and characterized on the basis of infrared, multinuclear 1H, 13C and 119Sn NMR and 119Sn M?ssbauer spectroscopic studies. These investigations suggest that all the ligands in R3Sn(HL) act as monoanionic bidentates coordinating through the COO- and NH2 groups. The 119Sn M?ssbauer studies, together with the NMR data, indicate that, for these polymeric derivatives, the polyhedron around tin in R3Sn(HL) is a trigonal-bipyramid with the three organic groups in the equatorial positions, while the axial positions are occupied by a carboxylic oxygen and the amino nitrogen atom from the adjacent molecule. The anti-inflammatory and cardiovascular activities and toxicity of all these compounds have been determined. Four of the complexes have also been screened against some of the chosen bacterial and fungal strains. The Ph3Sn(IV) compounds exhibit better anti-inflammatory and cardiovascular activities in comparison to the Me3Sn(IV) and n-Bu3Sn(IV) analogues. n-Bu3Sn(Gly-Ile) and Ph3Sn(Ala-Val) exhibit good antibacterial activity against all the chosen strains.  相似文献   

5.
Seven novel R2Sn(IV)-oxydiacetate (oda) and -iminodiacetate (ida) compounds of the form [R2Sn(oda)(H2O)]2 (R = Me, nBu, and Ph) (1-3), [(R2SnCl)2(oda)(H2O)2]n (R = Et, iBu, and tBu) (4-6), and [Me2Sn(ida)(MeOH)]2 (7) have been synthesized and characterized by IR, 1H, 13C, and 119Sn NMR (solution), solid-state 119Sn CPMAS NMR, and (119m)Sn M?ssbauer spectroscopy. The crystal structure of [Me2Sn(oda)(H2O)]2, 1, shows it to be dinuclear (centrosymmetric), with two seven-coordinated tin atoms, bridged by one arm of the carboxylate group from each oda. By contrast, the crystal structure of [(Et2SnCl)2(oda)(H2O)2]n, 4, comprises a zigzag polymeric assembly containing a pair of different alternating subunits, {Et2SnCl(H2O)} and {Et2SnCl(H2O)(oda)}, which are connected by way of bridging oda carboxylates, thus giving seven-coordinate tin centers in both components. Finally, the structure of [Me2Sn(ida)(MeOH)]2, 7, also centrosymmetric dinuclear, is comprised of a pair of mononuclear units with seven-coordinate tin. The 119Sn solid-state CPMAS NMR and (119m)Sn Mossbauer suggest the presence of seven-coordinate Sn metal atoms in some derivatives and the existence of two different tin sites in the [(R2SnCl)2(oda)(H2O)2]n compounds.  相似文献   

6.
Guo JY  Xi HW  Nowik I  Herber RH  Li Y  Lim KH  So CW 《Inorganic chemistry》2012,51(7):3996-4001
Reaction of [(PPh(2)═NSiMe(3))(PPh(2)═S)CSn:](2) (1) with elemental sulfur in toluene afforded [{(μ-S)Sn(IV)C(PPh(2)═NSiMe(3))(PPh(2)═S)}(3)Sn(II)(μ(3)-S)] (2) and [CH(2)(PPh(2)═NSiMe(3))(PPh(2)═S)] (3). Compound 2 comprises a Sn(II)S moiety coordinated with the Sn(IV) and S atoms of a trimeric 2-stannathiomethendiide {(PPh(2)═NSiMe(3))(PPh(2)═S)CSn(μ-S)}(3). Compound 2 has been characterized by NMR spectroscopy, (119)Sn M?ssbauer studies, X-ray crystallography, and theoretical studies. (119)Sn NMR spectroscopy and M?ssbauer studies show the presence of Sn(IV) and Sn(II) atoms in 2. X-ray crystallography suggests that the Sn(II)S moiety does not have multiple bond character. Theoretical studies illustrate that the C(methanediide)-Sn bonds comprise a lone pair orbital on each C(methanediide) atom and an C-Sn occupied σ orbital.  相似文献   

7.
用2-Fe-C6H4CO2H和(n-Bu)2SnO反应合成了(2-Fe-C6H4CO2)2Sn(n-Su)2(A)和{[2-Fe-C6H4O2)Sn(n-Bu)2]2O}(B)(Fe=(η^5-C5H5)Fe(η^5-C5H4)两种新的二正丁基锡配合物,并用元素分析,红外光谱和核磁共振(1H,13C)谱等方法对配合物的组成和结构进行了表征,由此推测出配合物可能的分子结构,测定了配合物的体外抗癌活性,结果表明配合物对HL-60,HCT,BGC-823,KB等癌细胞均有很好的抑制能力。  相似文献   

8.
The synthesis and characterization of new coordination compounds of some organotin(IV) chlorides with monomethyl phthalate is reported; the ligand molecules appear to be bound to the tin atom through carbonyl oxygen atoms. Their structures have been characterized by elemental analyses, molar conductance, and bonding in these complexes is discussed in terms of their IR, (1)H, (13)C, (119)Sn NMR and (119 m)Sn M?ssbauer spectral studies. The spectroscopic results obtained are in full agreement with the proposed 2:1 stoichiometry. The complexes soluble in DMSO have been screened against a wide spectrum of bacteria and the results obtained are quite promising. The LD(50) values have also been determined in the albino rats. Some of the complexes also exhibit high anti-inflammatory activity.  相似文献   

9.
New organotin(IV) complexes of the general formula R3Sn(L) (where R=Me, n-Bu and HL=L-proline; R=Me, Ph and HL=trans-hydroxy-L-proline and L-glutamine) and R2Sn(L)2 (where R=n-Bu, Ph and HL=L-proline; R=Ph, HL=trans-hydroxy-L-proline) have been synthesized by the reaction of RnSnCl(4-n) (where n=2 or 3) with sodium salt of the amino acid (HL). n-Bu2Sn(Pro)2 was synthesized by the reaction of n-Bu2SnO with L-proline under azeotropic removal of water. The bonding and coordination behavior in these complexes have been discussed on the basis of IR and 119Sn M?ssbauer spectroscopic studies in the solid-state. Their coordination behavior in solution has been discussed with the help of multinuclear (1H, 13C and 119Sn) NMR spectral studies. The 119Sn M?ssbauer and IR studies indicate that L-proline and trans-hydroxy-L-proline show similar coordination behavior towards organotin(IV) compounds. Pentacoordinate trigonal-bipyramidal and hexacoordinate octahedral structures, respectively, have been proposed for the tri- and diorganotin(IV) complexes of L-proline and trans-hydroxy-L-proline, in which the carboxylate group acts as bidentate group. L-glutamine shows different coordination behavior towards organotin(IV) compounds, it acts as monoanionic bidentate ligand coordinating through carboxylate and amino group. The triorganotin(IV) complexes of L-glutamine have been proposed to have trigonal-bipyramidal environment around tin. The newly synthesized complexes have been tested for their antiinflammatory and cardiovascular activities. Their LD50 values are >1000 mg kg-1.  相似文献   

10.
The new stannide ScAgSn was synthesized by induction melting of the elements in a sealed tantalum tube and subsequent annealing. ScAgSn crystallizes with a pronounced subcell structure: ZrNiAl type, P2m, a = 708.2(2) pm, c = 433.9(1) pm, wR2 = 0.1264, 321 F2 values, and 14 variables. The Guinier powder pattern reveals weak superstructure reflections pointing to a TiFeSi-type structural arrangement: I2cm, a = 708.1(1) pm, b = 1225.2(2) pm, c = 869.9(1) pm, wR2 = 0.0787, 5556 F2 values, and 49 variables. So far the growth of high-quality single crystals failed. Determination of the superstructure was partly based on merohedral triplet X-ray data augmented by 119Sn M?ssbauer spectroscopy and 119Sn and 45Sc solid-state NMR data. In particular, the observation of three crystallographically inequivalent sites in 45Sc NMR triple quantum magic-angle spinning (TQ-MAS) NMR spectra provided unambiguous proof of the superstructure proposed. The ScAgSn structure consists of a three-dimensional [AgSn] network (with Ag-Sn distances between 273 and 280 pm) in which the scandium atoms are located in distorted hexagonal channels, each having five tin and two silver nearest neighbors. Both crystallographically independent tin sites have a tricapped trigonal prismatic coordination, that is, [Sn1Sc6Ag3] and [Sn2Ag6Sc3] environments, which are well distinguished in the 119Sn NMR and M?ssbauer spectra because of their different site symmetries.  相似文献   

11.
Some novel lower homologues of diorganotin derivatives of germyl substituted propanoic acids with general formula [Ar(3)GeCH(R(1))CH(R(2))COO](2)SnR(2)(3), where Ar = p-CH(3)C(6)H(4), C(6)H(5), R(1) = p-CH(3)C(6)H(4), p-CH(3)OC(6)H(4), o-CH(3)OC(6)H(4), C(6)H(5), R(2) = H, CH(3), R(3) = CH(3), C(2)H(5) have been prepared by the condensation reaction of dialkyltin oxide and triarylgermyl(substituted) propanoic acid in 1 : 2 M ratio, respectively, and were characterized by IR, multinuclear ((1)H, (13)C, (119)Sn) NMR, (119 m)Sn M?ssbauer spectroscopy. The synthesized compounds were also screened for their toxicity and possible antibacterial, antifungal activities and found some encouraging results.  相似文献   

12.
Several new heteroleptic Sn(II) complexes supported by amino-ether phenolate ligands [Sn{LO(n)}(Nu)] (LO(1)=2-[(1,4,7,10-tetraoxa-13-azacyclopentadecan-13-yl)methyl]-4,6-di-tert-butylphenolate, Nu=NMe(2) (1), N(SiMe(3))(2) (3), OSiPh(3) (6); LO(2)=2,4-di-tert-butyl-6-(morpholinomethyl)phenolate, Nu=N(SiMe(3))(2) (7), OSiPh(3) (8)) and the homoleptic Sn{LO(1)}(2) (2) have been synthesized. The alkoxy derivatives [Sn{LO(1)}(OR)] (OR=OiPr (4), (S)-OCH(CH(3))CO(2)iPr (5)), which were generated by alcoholysis of the parent amido precursor, were stable in solution but could not be isolated. [Sn{LO(1)}](+)[H(2)N{B(C(6)F(5))(3)}(2)](-) (9), a rare well-defined, solvent-free tin cation, was prepared in high yield. The X-ray crystal structures of compounds 3, 6, and 8 were elucidated, and compounds 3, 6, 8, and 9 were further characterized by (119)Sn M?ssbauer spectroscopy. In the presence of iPrOH, compounds 1-5, 7, and 9 catalyzed the well-controlled, immortal ring-opening polymerization (iROP) of L-lactide (L-LA) with high activities (ca. 150-550 mol(L-LA) mol(Sn)(-1) h(-1)) for tin(II) complexes. The cationic compound 9 required a higher temperature (100 °C) than the neutral species (60 °C); monodisperse poly(L-LA)s were obtained in all cases. The activities of the heteroleptic pre-catalysts 1, 3, and 7 were virtually independent of the nature of the ancillary ligand, and, most strikingly, the homoleptic complex 2 was equally competent as a pre-catalyst. Polymerization of trimethylene carbonate (TMC) occurs much more slowly, and not at all in the presence of LA; therefore, the generation of PLA-PTMC copolymers is only possible if TMC is polymerized first. Mechanistic studies based on (1)H and (119)Sn{(1)H} NMR spectroscopy showed that the addition of an excess of iPrOH to compound 3 yielded a mixture of compound 4, compound [Sn(OiPr)(2)](n) 10, and free {LO(1)}H in a dynamic temperature-dependent and concentration-dependent equilibrium. Upon further addition of L-LA, two active species were detected, [Sn{LO(1)}(OPLLA)] (12) and [Sn(OPLLA)(2)] (14), which were also in fast equilibrium. Based on assignment of the (119)Sn{(1)H} NMR spectrum, all of the species present in the ROP reaction were identified; starting from either the heteroleptic (1, 3, 7) or homoleptic (2) pre-catalysts, both types of pre-catalysts yielded the same active species. The catalytic inactivity of the siloxy derivative 6 confirmed that ROP catalysts of the type 1-5 could not operate according to an activated-monomer mechanism. These mechanistic studies removed a number of ambiguities regarding the mechanism of the (i)ROPs of L-LA and TMC promoted by industrially relevant homoleptic or heteroleptic Sn(II) species.  相似文献   

13.
Reaction of the lithium triamidostannate [MeSi[SiMe(2)N(p-Tol)](3)SnLi(OEt(2))] (1) with 0.5 molar equivalents of MCl(2) (M=Zn, Cd, Hg) in toluene afforded the corresponding heterodimetallic complexes [MeSi[SiMe(2)N(p-Tol)](3)Sn](2)M [M=Hg (2), Cd (3), and Zn (4)]. The molecular structures of the mercury and cadmium complexes were determined by X-ray diffraction and found to adopt a linear Sn-M-Sn metal-metal bonded array (d(Sn-Hg) 2.6495(2), d(Sn-Cd) 2.6758(1) A), these being the first Hg-Sn and Cd-Sn bonds to be characterized by X-ray diffraction. That the Hg-Sn bonds are shorter than the Cd-Sn bonds in the isomorphous complexes is attributed to relativistic effects in the mercury system. In contrast, the structure of the Zn analogue is unsymmetrical with one stannate unit being Sn-Zn bonded (d(Sn(1)-Zn) 2.5782(4) A), while the Zn(II) atom bridges two amido functions of the second stannate cage, thus representing a second isomeric form of these complexes. The different degree of metal-metal bond polarity is reflected in the (119)Sn NMR chemical shifts of the three complexes. Variable-temperature NMR studies and a series of (1)H ROESY experiments of the cadmium complex 3 in solution revealed a dynamic exchange between the two isomers.  相似文献   

14.
A series of cationic cryptand complexes of tin(II), [Cryptand[2.2.2]SnX][SnX(3)] (10, X = Cl; 11, X = Br; 12, X = I) and [Cryptand[2.2.2]Sn][OTf](2) (13), were synthesized by the addition of cryptand[2.2.2] to a solution of either tin(II) chloride, iodide, or trifluoromethanesulfonate. The complexes could also be synthesized by the addition of the appropriate trimethylsilyl halide (or pseudohalide) reagent to a solution of tin(II) chloride and cryptand[2.2.2]. The complexes were characterized using a variety of techniques including NMR, Raman, and temperature-dependent M?ssbauer spectroscopy, mass spectrometry, and X-ray diffraction.  相似文献   

15.
The mixed gallium transition-metal complexes [FeCl[Ga(2)((t)Bu)(4)(neol)(2)]] (1) and [M[Ga(2)((t)Bu)(4)(neol)(2)]], M = Co (2), Ni (3), Cu (4), have been prepared by the reaction of [Ga(2)((t)Bu)(4)(neol-H)(2)] (neol-H(2) = 2,2-dimethyl-propane-1,3-diol) with the appropriate metal halide and Proton Sponge. Compounds 1-4 have been characterized by NMR (3), UV/vis, and IR spectroscopy and magnetic susceptibility (solution and solid state), and their molecular structures have been confirmed by X-ray crystallography. The molecular structure of compounds 1-4 consists of a tetracyclic core formed from two four-membered and two six-membered rings. The central metal atom adopts a square pyramidal (1) or square planar (2-4) geometry. The magnetic susceptibilities for 1, 2, and 4 are as expected for strong ligand field environments. On the basis of spectroscopic and structural data, the [Ga(2)((t)Bu)(4)(neol)(2)](2-) ligand appears to be more flexible than other chelating ligands; this is proposed to be due to the flexibility in the O-Ga-O bond angle.  相似文献   

16.
Some new diorganotin(IV) derivatives of the formulae, R2SnL, where R=Me, n-Bu, Ph, and n-Oct, and L is the dianion of histidinylalanine (H2L-1) and histidinylleucine (H2L-2) have been synthesized by the reaction of R2SnCl2 and the preformed sodium salt of the respective dipeptides. The bonding and coordination behaviour in these derivatives are discussed on the basis of FT-IR, multinuclear 1H, 13C and 119Sn NMR and 119Sn M?ssbauer spectroscopic studies. These investigations suggest that dipeptides in R2SnL act as dianionic tridentate coordinating through the COO(-), NH2 and N(-)peptide groups. The 119Sn M?ssbauer studies, together with the NMR data, suggest a trigonal bipyramidal geometry around tin in R2SnL with the alkyl/aryl groups and Npeptide in the equatorial positions, while a carboxylic oxygen and the amino nitrogen atom occupy the axial positions.  相似文献   

17.
The reaction of [Ru(eta-Cp)(dppf)N(3)] (1) with equimolar amount of SnBr(2) yielded an interesting heterotrimetallic compound [Ru(eta-Cp)(dppf)SnBr(3)] (2) (dppf: 1,1'-bis-diphenylphosphinoferrocene). Compounds 1 and 2 were characterised by IR, NMR (1H, 13C, 31P and 119Sn), and 2, additionally, by 57Fe and 119Sn M?ssbauer spectroscopy and X-ray crystallography. The latter results were as follows: monoclinic, C2/c, a = 32.8879(4)A, b = 11.9888(2)A, c = 20.8986(3)A, beta = 92.545(1)degrees, V = 8231.9(2)A(3), Z =8.  相似文献   

18.
The dianionic stannaborate [SnB11H11]2- oxidatively adds iodine at the tin vertex to give the iodinated cluster [I2SnB11H11]2- which maintains a closo structure, albeit having a nido electron count. The iodo-stannaborate [I2SnB11H11]2- is unstable at room temperature, but its structure was elucidated via single-crystal X-ray diffraction at low temperatures. The low-temperature 11B NMR spectrum exhibits a 5:1:5 signal pattern, and the 119Sn NMR shows a resonance at -1039 ppm. Iodination of the zwitterionic stannaborate iron complex Fe(SnB11H11)(triphos) leads to the formation of the corresponding iodo-stannaborate iron complex Fe(I2SnB11H11)(triphos) which features an iodinated stannaborate moiety that has a structure analogous to that of [I2SnB11H11]2-. The zwitterionic iodo-stannaborate complex is stable at room temperature, and the crystal structure and the 1H, 11B, 31P, and 119Sn NMR parameters were determined. 119Sn M?ssbauer spectroscopy supports the assignment of a tin oxidation state of +II for Fe(SnB11H11)(triphos) (delta = 2.71 mm s-1) and +IV for Fe(I2SnB11H11)(triphos) (delta = 1.22 mm s-1). Additional 57Fe M?ssbauer spectra confirm the iron oxidation state +II for both compounds.  相似文献   

19.
The three diamagnetic square planar complexes of nickel(II), palladium(II), and platinum(II) containing two S,S-coordinated 3,5-di-tert-butylbenzene-1,2-dithiolate ligands, (L(Bu))(2-), namely [M(II)(L(Bu))(2)](2-), have been synthesized. The corresponding paramagnetic monoanions [M(II)(L(Bu))(L(Bu)(*))](-) (S = (1)/(2)) and the neutral diamagnetic species [M(II)(L(Bu)(*))(2)] (M = Ni, Pd, Pt) have also been generated in solution or in the solid state as [N(n-Bu)(4)][M(II)(L(Bu))(L(Bu)(*))] salts. The corresponding complex [Cu(III)(L(Bu))(2)](-) has also been investigated. The complexes have been studied by UV-vis, IR, and EPR spectroscopy and by X-ray crystallography; their electro- and magnetochemistry is reported. The electron-transfer series [M(L(Bu))(2)](2-,-,0) is shown to be ligand based involving formally one (L(Bu)(*))(-) pi radical in the monoanion or two in the neutral species [M(II)(L(Bu)(*))(2)] (M = Ni, Pd, Pt). Geometry optimizations using all-electron density functional theory with scalar relativistic corrections at the second-order Douglas-Kroll-Hess (DKH2) and zeroth-order regular approximation (ZORA) levels result in excellent agreement with the experimentally determined structures and electronic spectra. For the three neutral species a detailed analysis of the orbital structures reveals that the species may best be described as containing two strongly antiferromagnetically interacting ligand radicals. Furthermore, multiconfigurational ab initio calculations using the spectroscopy oriented configuration interaction (SORCI) approach including the ZORA correction were carried out. The calculations predict the position of the intervalence charge-transfer band well. Chemical trends in the diradical characters deduced from the multiconfigurational singlet ground-state wave function along a series of metals and ligands were discussed.  相似文献   

20.
Eight di-n-butyltin(IV) complexes with glycolic, 2-hydroxy-propionic, succinic and malic acids, have been prepared by two different procedures. The compounds were characterised by elemental analysis, FTIR, Raman and119Sn Mössbauer spectroscopy. The IR and Raman data indicated the presence of bidentate and/or monodentate carboxylate groups, non linear C?Sn?C bonds, and Sn?O bonds within the complexes. The results of Mössbauer spectroscopic measurements, based on point-charge model calculations, have shown the occurrence of trigonal bipyramidal environment in the central tin(IV) atom, besides the octahedral and tetrahedral structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号