首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
聚偏氟乙烯中空纤维超滤膜的超声辅助清洗及反冲清洗   总被引:1,自引:0,他引:1  
聚偏氟乙烯中空纤维膜(PVDF)在处理污水过程中容易积垢、堵塞膜孔,因而在生产中必须经常进行膜清洗,但清洗效果不能令人满意.对PVDF膜进行了超声辅助清洗试验.得出超声波声强大、清洗效果好的结论,但是声强超过3000 W·m-2时,会破坏有机膜的结构.用10%的次氯酸钠溶液浸泡清洗的最佳时间为4 h,膜通量恢复率为24.4%;而在相同溶液浓度、相同时间下,利用超声辅助清洗,通量恢复率则达到62.3%.反冲清洗试验中,在无超声条件下,清洗90 min,通量提高到26.3 L·h-1·m-2,通量恢复率为21.8%;当开启声强为2500 W·m-2的超声,清洗相同时间后,膜通量为39.3 L·h-1·m-2,通量恢复率为81.9%,明显好于未使用超声时的效果.  相似文献   

2.
将超声波用于浸没式中空纤维膜反应器的在线清洗,考察了超声波参数和操作条件对清洗效果的影响。结果表明,超声功率352 W、频率40 kHz时,最佳超声时间为10 min,最佳清洗距离为5 cm。膜表面SEM照片显示,超声距离过近和超超声时间过长会对膜自身结构造成破坏。在以上条件下,试验采取曝气强度0.6 m3/(m2.h)的超声-曝气组合清洗方式取得了最理想的清洗效果,膜通量恢复率可达74.24%。而曝气强度不宜过大,否则清洗效果明显下降。  相似文献   

3.
有研究表明:超声波幅射可用于透析操作中扩散速度的提高,有效地提高孔介质中流体的流速,并可作为膜分离操作的辅助强化手段以提高渗透通量。本文利用超声波强化膜分离及清洗污染膜的方法,对污染的微滤膜进行清洗,并通过测定膜污染前后水通量的变化和清洗时间来评价超声波清洗的效果。  相似文献   

4.
张义 《广州化工》2023,(2):171-173
通过超声波清洗技术的原理和优势,以及对沣河污水厂MBR膜的在线清洗试验,研究超声波清洗对于MBR膜通量的恢复效果。试验表明,超声波功率2000 W,频率40 kHz、清洗时间20 min,是沣河污水厂MBR膜清洗的最适参数,膜通量恢复率在92.3%以上,结合化学碱洗,膜通量恢复率为97.8%,清洗效果理想,MBR膜通量得到基本恢复,同时NaClO反洗投加量由4 L/m2降至1 L/m2,节约3/4的药剂成本。对于采用MBR工艺的污水处理厂,具有实际的研究价值。  相似文献   

5.
超声波清洗技术用于清洗10g/L酵母菌溶液污染的聚偏氟乙烯(PVDF)微滤膜。实验中所用的超声波频率为40kHz,超声波的强度为1.43~2.85W/cm^2。实验结果表明:超声波水洗是恢复其水通量的有效方法。超声波强度越高,达到相同的清洗时间较短。而超声波清洗时水溶液温度越高,超声波的清洗效果反而下降。  相似文献   

6.
超声对聚偏氟乙烯中空纤维超滤膜的清洗研究   总被引:1,自引:0,他引:1  
文章探讨了超声清洗对聚偏氟乙烯(PVDF)中空纤维超滤膜的损坏及其通量的影响。实验表明,膜面的破坏随声强和处理时间的增加而增加,但声强在2 200 W/m2时,处理30 h膜面无损坏。新膜易被饱和CaC l2溶液污染,通量下降明显。清洗实验表明,超声和稀柠檬酸协同作用能较易地除去新膜表面的污垢,使其通量恢复到初始通量的81%,而仅用酸洗只能使膜通量恢复到初始通量的66.3%。对于污染较重的膜必须用稀酸浸泡,浸泡7 h后,超声和稀柠檬酸协同清洗可使通量恢复到初始通量的73.2%,明显高于无浸泡时的56.2%。  相似文献   

7.
采用氯化钙和碳酸氢钙配置原水,模拟反渗透膜使用环境,测定膜污染后膜性能的变化趋势,并对膜进行了清洗,对比了不同阶段膜通量的恢复情况,并比较了不同清洗温度下膜通量的恢复情况。结果表明:在本实验条件下,膜通量随着膜污染的加剧呈现出先快后慢的下降趋势,而脱盐率呈先慢后快的下降趋势;污染的膜经过酸洗后,膜性能恢复到初始的98.6%;清洗温度越高,膜通量恢复越好。  相似文献   

8.
污染聚偏氟乙烯中空纤维超滤膜的超声清洗   总被引:5,自引:0,他引:5       下载免费PDF全文
郭伟  晋卫  王宾  吕效平 《化工学报》2006,57(12):3040-3044
中空纤维超滤膜污染和清洗影响膜处理废水工艺的经济性及可运行性.研究了平板浸没式超声处理器(40 kHz)与2000 mg·L-1柠檬酸清洗剂对中石化某水处理厂污染聚偏氟乙烯超滤膜的清洗效果.利用自定义的除垢率和扫描电镜对清洗结果进行表征并用过滤通量来验证.证明超声对超滤膜的清洗效果显著.单根膜清洗除垢率比不加超声时提高了25%,达到80%左右,且没有破坏膜的表面和结构.得到本批污染膜及自制污染膜组件的优化清洗工艺及超声参数为:频率40 kHz、声强2200 W·m-2、超声处理时间30 min.未使用反向冲清洗,仅切向气流结合超声清洗膜面,清洗后的通量从原来污染组件的0.0368 cm3·cm-2·min-1增加到0.1254 cm3·cm-2·min-1,恢复到相当于新膜初始通量的72.5%,通量增加率达到241%.进一步证明了超声清洗膜的可行性和有效性.  相似文献   

9.
超滤处理豆腐废水的膜污染及清洗   总被引:1,自引:0,他引:1  
采用中空纤维膜超滤豆腐废水,提取大豆低聚糖,对膜污染及其清洗进行了研究。探讨了不同清洗剂和不同清洗方法对膜通量的恢复效果;对清洗温度及其压力进行了优化;清洗后膜通量恢复率可达90%以上。  相似文献   

10.
实验对已污染的聚醚砜膜进行了清洗的研究,并通过测量各种清洗剂清洗后膜水通量的恢复,确定适宜的清洗剂、清洗时间、清洗液浓度和操作压力,选择出最佳的清洗方案,取得较好的清洗效果。通过研究表明:被污染的聚醚砜膜用混合清洗剂清洗恢复率可达到85%,效果要明显优于单一的清洗方法。  相似文献   

11.
超声在陶瓷膜处理乳化含油废水中的作用研究   总被引:2,自引:0,他引:2  
Ultrasonic field was applied in the treatment of oil emulsification wastewater by ZrO2 ceramic mem-brane. The permeate flux, rejection ratio in the filtration process and recovery ratio of flux in the membrane cleaning process were measured. Great improvement in the permeate flux and rejection ratio have been observed for the membrane process enhanced by the ultrasonic field. The permeate flux of water through the membrane was about 210L.m^-2.h^-1 and the oil rejection ratio was over 99.9% under the optimal ultrasonic treatment conditions, which were 8W of ultrasonic power, 7cm of ultrasonic probe length introduced into the membrane channel and the same ultrasonic radiation direction as the wastewater flow. The resistance of the membrane process was compared between the cases with and without ultrasound, and the total resistance was reduced 68% by the use of ultrasound, Four methods including water cleaning, water cleaning under sonication, chemical cleaning and chemical cleaning under sonication were used to recover membrane flux. It was found that the flux recovery ratio increased with the increase of ultrasonic cleaning power. In addition, the use of chemical agents combining with ultrasonic irradiation showed a synergistic effect, which resulted in the highest cleaning efficiency and the shorter cleaning time.  相似文献   

12.
针对陶瓷膜洗涤超细TiO2粉体中Cl-的过程,确定了适合的跨膜压差和膜表面流速,并采用阻力系列模型分析膜污染机理,确定有效的膜再生方法。此过程渗透通量随跨膜压差和膜表面流速的增长而增长,但是增长幅度减缓。合适的跨膜压差和膜表面流速分别为0.10—0.15 MPa和2.0 m/s;主要的膜污染来自粉体在膜表面的沉积;单一的化学和物理清洗方法无法达到理想的清洗效果,采用纯水浸泡、超声波清洗和质量分数0.5%的HCl清洗可使纯水通量恢复至新膜的72%以上,且多次的清洗效果稳定。  相似文献   

13.
《Desalination》2007,202(1-3):361-368
The effect of ozone back washing for membrane fouling reduction was experimentally investigated in a submerged metal membrane microfiltration system. A cleaning by intermittent ozone gas backwashing was effective in recovering the permeation flux. Intermittent ozone backwashing was highly effective than the air or permeates backwashing for flux recovery. Regarding the operational parameters, the increase of ozone gas flow rate was more effective than the increase of injection time under the conditions of same ozone dose. However, the backwashing cycle was longer, the effect of flux recovery by ozone backwashing decreased. Therefore, it is favorable to operate membrane cleaning before the foulant was consolidated on membrane surface.  相似文献   

14.
《分离科学与技术》2012,47(16):3569-3584
Abstract

Homogeneous alumina membranes fouled by polystyrene latex particles at different pH values and ionic strengths were subjected to ultrasonic cleaning. Cleaning was more effective at high and low pH than at neutral pH. At low pH values, less repulsive particle‐particle interactions resulted in the removal of millimeter‐scale aggregates and highly effective cleaning. At near‐neutral pH, stronger repulsive particle‐particle interactions caused detachment to occur as individual particles from the cake layer rather than as flocs, which was a slightly less effective cleaning mechanism. Ultrasonic cleaning of cake layers formed at high ionic strength (>0.3 M KCl) was less effective than cleaning at lower ionic strength (<0.3 M KCl). High ionic strength caused particles to coagulate in solution and deposit as flocs on the membrane surface forming a highly permeable fouling layer. This fouling layer was resistant to ultrasound at the sub‐optimal cleaning conditions used in this study, perhaps due to particle attachment occurring within a primary energy minimum. Membrane cleaning experiments performed with particles of varying size showed that particle size was less important than the surface potential of the particles. For a given mass, particles that possessed the largest surface potential formed the thickest fouling layer, irrespective of particle size, and showed the greatest improvement in flux with ultrasonic cleaning. These results demonstrate that solution conditions influence ultrasonic cleaning of membranes primarily by modifying particle‐particle and particle‐membrane interactions as well as cake layer structure, rather than by impacting the extent or magnitude of cavitation events.  相似文献   

15.
In this study, remediation of ceramic membrane fouling by an in-line intermittent ultrasound system was investigated. A piezoelectric ultrasonic transducer was integrated into a membrane unit that provided ultrafiltration (UF) of a diluted skim milk solution containing 0.10 wt% of protein. The effects of ultrasound at varied frequencies (20, 28, and 40 kHz) and power intensities (1.44, 2.88, and 5.76 W/cm2) under continuous operation and intermittent mode at various intervals (0.50, 1.0, 1.5, 2.0, 2.5, and 3.0 minutes) on membrane fouling were studied. The quality and flow rate of the permeate stream were monitored for the evaluation of the UF process performance. Optimal conditions of continuous ultrasound were found at 28 kHz and 2.88 W/cm2. Moreover, at optimal ultrasonic conditions, the optimal intermittent time was found at 0.50 minute. At optimal ultrasonic conditions, the permeate amount increased by 79.8% and 94.2% for 0.50 minute intermittent ultrasound and continuous ultrasound, respectively, as compared with that of the UF process without ultrasound. Also, intermittent ultrasound induced better fouling control at a lower protein concentration of 0.05% by weight. The cleaning effect of ultrasound could be attributed to the cavitation bubbles generated by the rarefaction and pressure cycles of the applied ultrasound.  相似文献   

16.
Ultrafiltration (UF) membrane fouling is often encountered in water treatment. Algae could be removed by UF membrane for its nominal pore size, and the algae cells deposited on the surface of UF membrane. The cells attach to the membrane, they start to release secretion and produce extracellular polymetric substances (EPS), which accumulate on the surface and cause the flux decline. This study examined the effects of hydraulic and chemical cleaning on fouled membrane by algae-rich reservoir water. Four kinds of hydraulic cleaning method were investigated, including forward flushing, backwashing, forward flushing followed by backwashing and backwashing followed by forward flushing. Backwashing followed by forward flushing was more effective for flux recovery, and 20 min duration were enough for the cleaning. To maximize flux recovery for the algae-fouled membrane, chemical cleaning was applied as enhanced cleaning strategies. NaOH, NaOCl, and citric acid were used for cleaning agents. The cleaning with the combination of NaOH (0.02 N) and NaOCl (100 mg/L) was effective than separate uses. And the cleaning duration was determined as 4 h.  相似文献   

17.
Membrane fouling and chemical cleaning in water recycling applications   总被引:2,自引:0,他引:2  
Fouling and subsequent chemical cleaning are two important issues for sustainable operation of nanofiltration (NF) membranes in water treatment and reuse applications. Fouling strongly depends on the feed water quality, especially the nature of the foulants and ionic composition of the feed water. Consequently, appropriate selection of the chemical cleaning solutions can be seen as a critical factor for effective fouling control. In this study, membrane fouling and chemical cleaning under condition typical to that in water recycling applications were investigated. Fouling conditions were achieved over approximately 18 h with foulant cocktails containing five model foulants namely humic acids, bovine serum albumin, sodium alginate, and two silica colloids in a background electrolyte solution. These model foulants were selected to represent four distinctive modes of fouling: humic acid, protein, polysaccharide, and colloidal fouling. Three chemical cleaning solutions (alkaline solution at pH 11, sodium dodecyl sulphate (SDS), and a combination of both) were evaluated for permeate flux recovery efficiency. The results indicated that with the same mass of foulant, organic fouling was considerably more severe as compared to colloidal fouling. While organic fouling caused a considerable increase in the membrane surface hydrophobicity as indicated by contact angle measurement, hydrophobicity of silica colloidal fouled membrane remained almost the same. Furthermore, a mechanistic correlation amongst cleaning efficiency, characteristics of the model foulants, and the cleaning reagents could be established. Chemical cleaning of all organically fouled membranes by a 10 mM SDS solution particularly at pH 11 resulted in good flux recovery. However, notable flux decline after SDS cleaning of organically fouled membranes was observed indicating that SDS was effective at breaking the organic foulant—Ca2+ complex but was not able to effectively dissolve and completely remove these organic foulants. Although a lower permeate flux recovery was obtained with a caustic solution (pH 11) in the absence of SDS, the permeate flux after cleaning was stable. In contrast, the chemical cleaning solutions used in this study showed low effectiveness against colloidal fouling. It is also interesting to note that membrane fouling and chemical cleaning could permanently alter the hydrophobicity of the membrane surface.  相似文献   

18.
王凤来  陈亚中  崔鹏  熊伟 《化工学报》2011,62(1):119-124
针对超声强化膜分离过程能耗高的问题,提出并设计了一种新型超声强化膜分离操作方式,并进行了超声强化陶瓷膜微滤超细TiO2颗粒悬浮液的研究。考察了超声场参数、操作时间及溶液环境对多通道陶瓷膜微滤过程的影响规律,并分析了此操作方式强化陶瓷膜微滤颗粒悬浮体系的机理。结果表明,该操作方式能够获得较高膜通量恢复率及平均膜通量,同时超声能量消耗减小了90.0%以上;降低超声频率及提高功率,有利于膜通量恢复,在超声参数45 kHz和0.33 W·cm-2条件下,膜通量恢复到初始值的94.0%;控制超声辐射时间0.167 min,微滤时间8 min时,平均膜通量提高了61.5%;降低悬浮液颗粒浓度及提高料液温度都有利于超声场强化陶瓷膜微滤过程。  相似文献   

19.
磁絮凝膜过滤工艺中附加磁场强化清洗   总被引:2,自引:0,他引:2       下载免费PDF全文
王捷  杨军  贾辉  张宏伟 《化工学报》2014,65(12):4997-5003
基于磁强化絮凝膜过滤(MEFMF)工艺中磁絮体和含磁滤饼层的特性,设计了在线(on-line)和离线(off-line)磁强化清洗(MEC)工艺.在磁场和曝气剪切的协同作用下,含磁滤饼层脱离膜纤维表面,膜通量恢复率较常规物理清洗(RC)明显提高.在离线磁强化清洗时,设计反洗装置中心的磁感应强度为6 mT,曝气强度为500 L·m-2·min-1,控制清洗时间为5 min,维持反洗压力0.04 MPa,可达到最佳的膜清洗效果,通量恢复率达97%以上.在外加磁场强化清洗过程中,滤饼层中的磁种发生磁化作用,滤饼层表现出微弱的宏观磁性,在磁场的作用下向磁极运动,使得膜通量恢复率明显提高.此外,在MEFMF工艺中采用间歇磁强化清洗,可以更加有效地去除引起不可逆膜污染的胶体和有机物,降低膜污染速率,减缓膜污染.  相似文献   

20.
Flux recovery of tubular ceramic membranes fouled with whey proteins   总被引:1,自引:0,他引:1  
Membrane process efficiency is governed by the formation of fouling deposits during processing of dairy fluids. Because of fouling with whey proteins, permeate flux can drastically decline during filtration process. This paper describes the flux recovery procedure for ceramic tubular membranes (50 and 200 nm pore sizes) fouled with whey proteins. The results comprehend the effect of rinsing and cleaning agent choice and concentration, on the cleaning efficiency. As chemical cleaning agents, the caustic solution and the commercial detergents P3-ultrasil 67 and P3-ultrasil 69 were selected. The observations are that rinsing with deionised water contributes to a flux recovery to a certain degree. For the 50 nm membrane, the choice of the 1.0% (w/w) caustic solution, as cleaning agent, gives the best flux recovery. For the 200 nm, total flux recovery was not observed regardless of the cleaning agent choice and concentration. Cleaning with chosen commercial detergent appeared to be less efficient than cleaning with caustic solution for the chosen ceramic membranes. Also, a mathematical model, proposed in this study, has shown high agreement with experimentally obtained data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号