首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huipeng Chen 《Polymer》2007,48(21):6404-6414
Blends of isotactic polystyrene (iPS) with non-crystallizable atactic polystyrene (aPS) were studied by differential scanning calorimetry and small angle X-ray scattering. The iPS/aPS blends, prepared by solution casting, were found to be miscible in the melt over the entire composition range. Both quenched amorphous and semicrystalline blends exhibit a single, composition-dependent glass transition temperature, depressed from that of either of the homopolymer components. Addition of aPS causes a decrease in crystallinity and in the rigid amorphous fraction, and suppression of the reorganization/recrystallization of iPS during thermal scanning: only one melting peak is observed for blends with larger aPS content. Formation and devitrification of the rigid amorphous fraction of iPS are also affected by aPS addition. The annealing peak, which is due to the relaxation of rigid amorphous fraction in parallel with melting of a tiny amount of crystals, is retarded with an increase of the composition of aPS, resulting in the slow devitrification of RAF in parallel with the melting of large amount of crystals. X-ray scattering shows that the long period in the iPS/aPS blends is greater than in the iPS homopolymer, and long period increases slightly as aPS content increases. Comparison of the volume fraction of phase 1 with the volume fraction crystallinity from DSC suggests that more and more amorphous phase is rejected outside the lamellar stacks as aPS content increases. The effect of aPS addition is to reduce the confinement of the amorphous phase chains. The cooperativity length, ξA, which is calculated from thermal analysis of the Tg region, increases with aPS addition. The interlamellar and extra-lamellar amorphous chains both contribute to the glass transition relaxation process.  相似文献   

2.
Two-component blends of differing polystyrene (PS), one syndiotactic (sPS) and the other isotactic (iPS) or atactic (aPS), were discussed. The phase behavior, crystallization and microstructure of binary polystyrene blends of sPS/iPS and sPS/aPS with a specific composition of 5/5 weight ratio were investigated using optical microscopy (OM), differential scanning calorimetry, wide-angle X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM). Based on the kinetics of enthalpy recovery, complete miscibility was found for the sPS/aPS blends where a single recovery peak was obtained, whereas phase separation was concluded for the sPS/iPS blends due to the presence of an additional recovery shoulder indicating the heterogeneity in the molten state. These findings were consistent with OM and SEM observations; sPS/iPS exhibits the dual interconnectivity of phase-separated phases resulting from spinodal decomposition.Both iPS and aPS have the same influence on the sPS crystal structure, i.e., dominant β-form sPS and mixed α-/β-form sPS obtained for melt-crystallization at high and low temperatures respectively, but imperfect α-form sPS developed when cold-crystallized at 175 °C. Co-crystallization of iPS and sPS into the common lattice was not observed regardless the thermal treatments, either cold or melt crystallization. Due to its slow process, crystallization of iPS was found to commence always after the completion of sPS crystallization in one-step crystallization kinetics. Segregation of rejected iPS component during sPS crystallization was extensively observed from TEM and SEM images which showed iPS pockets located between sPS lamellar stacks within spherulites, leading to the interfibrillar segregation, which was similar with that observed in the sPS/aPS blends. The addition of iPS (or aPS) component will reduce the overall crystallization rate of the sPS component and the retardation of crystal growth rates can be simply accounted by a dilution effect, keeping the surface nucleation intact. The phase-separated structure in the sPS/iPS blend shows a negligible effect on sPS crystallization and the signature of phase separation disappears after sPS crystallization. Depending on the relative dimensions of the segregated domains and iPS lamellar nucleus, subsequent crystallization of iPS can proceed to result in a crystalline/crystalline blend, or be inhibited to give a crystalline/amorphous blend morphology similar with that of sPS/aPS blends.  相似文献   

3.
Pure isotactic polystyrene (iPS, Mw = 8.89 × 104, Mw/Mn = 4.89) and its blends with an atactic polystyrene (aPS, Mw = 3.9 × 105, Mw/Mn < 1.13) were subjected to draw by solid state coextrusion at 127°C within polyethylene. The content of amorphous iPS in these blends was varied from 100 to 24.4 wt %. The extent of draw-induced crystallization was found to depend on the draw ratio and on iPS concentration. The blend with 24.4% iPS was coextruded in two stages. The highest effective draw ratio (EDR) was 7.6 and 13.7 for one- and two-stage draw, respectively. The highest crystallinity of 33.2% was obtained for pure iPS at the maximum EDR of 7.6. Considerable crystallinity was induced in blends, requiring successively higher draw ratio to reach similar crystallinity with increased aPS content. The tensile modulus increased from 1.5 to 3.2 GPa, independent of iPS concentration. Thermal shrinkage results indicate that the elastic recovery of draw in the blends is near quantitative for an EDR < 8. For pure iPS, extrudate elastic recovery was dramatically altered by the draw-induced crystallinity.  相似文献   

4.
5.
The nonisothermal crystallization kinetics of polypropylene (PP), PP/polystyrene (PS), and PP/PP‐g‐PS/PS blends were investigated with differential scanning calorimetry at different cooling rates. The Jeziorny modified Avrami equation, Ozawa method, and Mo method were used to describe the crystallization kinetics for all of the samples. The kinetics parameters, including the half‐time of crystallization, the peak crystallization temperature, the Avrami exponent, the kinetic crystallization rate constant, the crystallization activation energy, and the F(T) and a parameters were determined. All of the results clearly indicate that the PP‐g‐PS copolymer accelerated the crystallization rate of the PP component in the PP/PP‐g‐PS/PS blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Syndiotactic polystyrene (sPS) and poly(phenylene oxide) (PPO) blends, miscible in the melt state, were crystallized from the melt and the quenched state at different temperatures. The effect of the crystallization temperature on the phase behavior of the blends and the polymorphic changes in sPS was investigated by dynamic mechanical analysis (DMA), wide‐angle X‐ray diffraction (WAXD), and density measurements. In most blends, the crystallization of sPS induced segregation into two homogeneous amorphous phases of different compositions. The temperatures of the DMA relaxations of the neat homopolymers and crystallized blends were fit by the Gordon–Taylor relation to calculate the compositions of these phases. In melt‐crystallized blends, with slower crystallization, the major amorphous phase became sPS‐rich, whereas the minor phase became PPO‐rich. These major and minor amorphous phases could be tentatively assigned to interfibrillar and interlamellar regions, respectively. In cold‐crystallized blends, slower crystallization decreased the sPS concentration in both phases, and the scale of segregation was much smaller. WAXD studies and density measurements indicated a complex polymorphic behavior of sPS after it was blended with PPO. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1975–1983, 2003  相似文献   

7.
This investigation deals with the morphology and tensile behavior of polystyrene/low density polyethylene blends compatibilized by hydrogenated styrene‐b‐butadiene‐b‐styrene triblock copolymer. The stress‐strain measurements indicate that blends with excellent toughness were achieved, due to the compatibilizing role of the triblock copolymer in the system. The morphology of the blends was observed by scanning electron microscopy (SEM), and the results show that the state of polystyrene changes from continuous phase to dispersed phase with increasing LDPE content. The correlation between mechanical properties and morphology is discussed. The morphologies of the tensile bars were also examined by SEM, and the deformation mechanisms of the blend were further analysed according to fractography. © 1999 Society of Chemical Industry  相似文献   

8.
Weihua Zhou 《Polymer》2007,48(13):3858-3867
Syndiotactic polystyrene (sPS) blends with highly-impact polystyrene (HIPS) were prepared with a twin-screw extruder. Isothermal crystallization, melting behavior and crystalline morphology of sPS in sPS/HIPS blends were investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and polarized optical microscopy (POM). Experimental results indicated that the isothermal crystallization behavior of sPS in its blends not only depended on the melting temperature and crystallization temperature, but also on the HIPS content. Addition of HIPS restricted the crystallization of sPS melted at 320 °C. For sPS melted at 280 °C, addition of low HIPS content (10 wt% and 30 wt%) facilitated the crystallization of sPS and the formation of more content of α-crystal. However, addition of high HIPS content (50 wt% and 70 wt%) restricted the crystallization of sPS and facilitated the formation of β-crystal. More content of β-crystal was formed with increase of the melting and crystallization temperature. However, α-crystal could be obtained at low crystallization temperature for the specimens melted at high temperature. Addition of high HIPS content resulted in the formation of sPS spherulites with less perfection.  相似文献   

9.
The crystallization and orientation behavior in the miscible iPS/PPO blends were studied aiming at producing oriented materials consisting of iPS crystals and amorphous PPO chains. Oriented films of iPS/PPO blends were prepared by drawing the melt-quenched blend films. The films were heat-treated under constraint at the drawing temperature so as to crystallize the molecular chains of iPS in the oriented state. The crystallinity and the crystal orientation in the drawn annealed films were studied by the wide-angle X-ray diffraction (WAXD), and the orientation behaviors of molecular chains were analyzed by polarized FTIR spectroscopy. WAXD diagrams show the presence of the highly oriented crystalline structure of iPS in the drawn annealed films of pure iPS and iPS/PPO=7/3 blend. The polarized FTIR spectra of drawn annealed films suggest that the molecular orientation of the amorphous chains of PPO and iPS is markedly relaxed by the heat treatment, although the orientation of iPS with 31 helical structure was retained during the oriented crystallization. It was concluded that the drawn annealed samples of the iPS/PPO=7/3 blend consist of highly oriented iPS crystals and nearly isotropic amorphous materials. The mechanical properties of the oriented iPS/PPO blends were measured not only in the stretching direction but also perpendicular to the stretching direction. It was shown that the ultimate strength in the perpendicular direction is 4-5 times higher in the drawn annealed film of iPS/PPO=7/3 blend than in the drawn annealed iPS. The improvement in the vertical strength in the blend is discussed in relation to the structural characteristics of the iPS/PPO blend.  相似文献   

10.
Fang-Chyou Chiu  Chi-Gong Peng 《Polymer》2002,43(18):4879-4886
This work examined how the molecular weight of atactic polystyrene (aPS) affects the thermal properties and crystal structure of syndiotactic polystyrene (sPS)/aPS blends using differential scanning calorimetry, polarized light microscopy and wide angle X-ray diffraction (WAXD) technique. For comparative purposes, the structure and properties of the parent sPS was also investigated. The experimental results indicated that these blends showed single glass transition temperatures (Tgs), implying the miscibility of these blends in the amorphous state regardless of the aPS molecular weight. The non-isothermal and isothermal melt crystallization of sPS were hindered with the incorporation of aPSs. Moreover, aPS with a lower molecular weight caused a further decrease in the crystallization rate of sPS. Complex melting behavior was observed for parent sPS and its blends as well. The melting temperatures of these blends were lower than those of the parent sPS, and they decreased as the molecular weight of aPS decreased. Compared with the results of the WAXD study, the observed complex melting behavior resulted from the mixed polymorphs (i.e. the α and β forms) along with the melting-recrystallization-remelting of the β form crystals during the heating scans. The degree of melting-recrystallization-remelting phenomenon for each specimen was dependent primarily on how fast the sPS crystals were formed instead of the incorporation of aPSs. Furthermore, the existence of aPS in the blends, especially the lower molecular weight aPS, apparently reduced the possibility of forming the less stable α form in the sPS crystals.  相似文献   

11.
The supermolecular structure of binary isotactic polypropylene/atactic polystyrene (iPP/PS) injection‐molded blends were studied by wide‐angle X‐ray diffraction, differential scanning calorimetry, and optical microscopy. The combination of different methods gives a possibility of analysis of relation between the phase transformation in polypropylene and crystallization parameters. Effect of compatibilization of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) grafted with maleic anhydride (SEBS‐g‐MA) block copolymers in the iPP/PS blends on the structure, nucleation, crystal growth, solidification, and the phase morphology was analyzed. We found that the β‐crystallization tendency of polypropylene matrix can be enhanced by adding atactic polystyrene. However, the incorporation of SEBS‐g‐MA into iPP/PS blends resulted in an important decrease in β‐content of iPP. It is evident that the presence of compatibilizing agent caused a very significant reduction of the α‐spherulite growth rates and the crystal conversion as well as increases of half‐time crystallization in comparison with the iPP/PS systems. The relation between kinetic parameters of crystallization process and polymorphic structure of iPP in blend systems has been satisfactorily explained. Moreover, a strong effect of processing parameters on the β‐phase formation was observed. The results clearly show that at a higher temperature of mold and lower injection speed, the amount of β‐phase of iPP matrix slightly decreases. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

12.
The directional solidification of polypropylene (PP) films results in an oriented semicrystalline microstructure and may offer a method to improve the properties of a product. The directional solidification of isotactic PP samples blended with 0% to 50% atactic PP, by mass, was therefore studied. The effects of composition and processing conditions were monitored to determine how they affect the quality and microstructure of the directionally solidified films. Difficulty was encountered in reproducing testable samples with a unidirectional crystal microstructure. Tensile testing of directionally solidified films was used to quantify the yield strength and elastic modulus of the films. These properties were compared with those of other PP films. The tensile test results do not support the hypothesis that enhanced mechanical properties were produced by directional solidification of the PP films. Improving the sample fabrication method and optimizing the processes involved may, however, lead to directionally solidified PP films with enhanced mechanical properties. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1516–1528, 2000  相似文献   

13.
The compatibilizing effect of the triblock copolymer poly(styrene-b-butadiene-b-styrene) (SBS) on the morphology and mechanical properties of immiscible polypropylene/polystyrene (PP/PS) blends were studied. Blends with three different weight ratios of PP and PS were prepared and three different concentrations of SBS were used for investigations of its compatibilizing effects. Scanning electron microscopy (SEM) showed that SBS reduced the diameter of the PS-dispersed particles as well as improved the adhesion between the matrix and the dispersed phase. Transmission electron microscopy (TEM) revealed that in the PP matrix dispersed particles were complex “honeycomblike” aggregates of PS particles enveloped and joined together with the SBS compatibilizer. Wide-angle X-ray diffraction (WAXD) analysis showed that the degree of crystallinity of PP/PS/SBS slightly exceeded the values given by the addition rule. At the same time, addition of SBS to pure PP and to PP/PS blends changed the orientation parameters A110 and C significantly, indicating an obvious SBS influence on the crystallization process in the PP matrix. SBS interactions with PP and PS influenced the mechanical properties of the compatibilized PP/PS/SBS blends. Addition of SBS decreased the yield stress and the Young's modulus and improved the elongation at yield as well as the notched impact strength in comparison to the binary PP/PS blends. Some theoretical models for the determination of the Young's modulus of binary PP/PS blends were used for comparison with the experimental results. The experimental line was closest to the series model line. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 69: 2625–2639, 1998  相似文献   

14.
K. Jradi  S. Bistac  G. Reiter 《Polymer》2009,50(15):3724-10480
The ability to orient polymer chains by applying external forces opens up the possibility to obtain polymeric surfaces with ordered structures. Here, we employed a friction-transfer approach by moving a pin of isotactic polystyrene (i-PS) across a smooth silicon counterface at controlled velocity, pressure and temperature which led to the deposition of a molecularly thin layer of highly oriented i-PS chains. The observed morphology of the resulting film (ribbons oriented in the sliding direction) indicated that the transferred molecules were highly oriented. This was confirmed after isothermal crystallization which led to the formation of so-called “shish-kebab” crystals aligned in the sliding direction. Thus, after crystallization all polymers were preferentially oriented with their chain axis in the shearing direction. Our results strongly suggest that by extending the polymer chain conformations in the shearing direction we can introduce a significant reduction of the nucleation barrier. Accordingly, friction transfer allows to align not only the transferred polymer chains but also the subsequently forming crystalline domains within the transferred films.  相似文献   

15.
Blends of sulphonated polystyrene, neutralized with metal ions, have been prepared in various proportions with polystyrene homopolymer. Morphology, microstructure, and deformation modes of strained, cast thin films have been examined by transmission electron microscopy. Variables studied include blend composition and ion content. In blends of low ionomer concentration, the ionomer component phase-separates and takes the form of small dispersed particles. With the increase of ion content, the average particle size increases and, as crazes develop in the matrix, particles elongate and fibrillate. These ionic crosslinked particles adhere well to the matrix, share in carrying the applied stress and reinforce the matrix polymer. Implications of these results for mechanical performance of bulk samples are discussed.  相似文献   

16.
PP/PS quasi‐nanoblend pellets were synthesized by diffusion and subsequent polymerization of styrene in iPP pellets via a two‐step procedure and then processed by injection molding. The PS distributions along the thickness direction of the molded bars were investigated by Micro‐FTIR, showing almost homogeneous distribution no matter whether the PS distribution in the blend pellets is homogeneous. The morphology of the molded bars was investigated by FESEM, revealing two types of particles (small spherical and bigger irregular‐shaped complex aggregates) and good interfacial adhesion between particles and matrix. The particles are mainly in nano and submicron sizes, and only few particles approach 1 μm. The mechanical properties of the molded bars were evaluated by uniaxial tensile testing, showing a significant reinforcing effect without significantly loosing ductility. The yield strength of all the blends increase 20–27% compared to neat PP and the elongations at break are all over 300%. The remarkable mechanical properties of the molded bars were correlated with their morphology. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43983.  相似文献   

17.
C.J.G. Plummer  A.M. Donald   《Polymer》1991,32(18):3322-3330
Step-strain ridges are known to form when glassy polymers are subjected to a stepwise series of strain increments. For relatively short times between increments (ageing times) and at relatively low temperatures, these step-strain ridges (studied here in crazes in polystyrene and in deformation zones in poly(ether sulphone)) become more marked as the interval ti between successive strain increments is increased. This is related to the phenomenon of stress ageing, as suggested by the approximate logarithmic dependence of the ridge height δ on ti. However, at high temperatures, and or low molecular weight and relatively long ti, δ may begin to decrease with ti. This is argued to be a result of the onset of disentanglement in the aged material.  相似文献   

18.
Bing Na  Ping Zhao  Rongni Du  Zhenqiang Yu 《Polymer》2005,46(14):5258-5267
Various lamellar orientations of high-density polyethylene (HDPE), due to competition between bulk nucleation and interfacial nucleation, have been realized in its melt drawn blends with isotactic polypropylene (iPP) upon cooling after subjected to 160 °C for 30 min. Directed crystallization, with heterogeneous nucleation in the bulk (within domains), is defined as lamellar growth along boundary of anisotropic domains and is favored in larger domains at higher temperature (slow cooling), since overgrowth of lamellae can feel the interface rather than impingement with neighbor ones as a result of scare nuclei at higher temperature. Moreover, lamellar growth caused by directed crystallization is dependent of dimension of confinement. Due to 2D confinement of cylindrical domains, lamellae can only grow along the axis of cylinder and thus b-axis orientation is formed. While in the layered domains with 1D confinement, however, lamellae grow with the normal of (110) plane along the melt drawn direction. On the other hand, epitaxial growth of HDPE chains onto iPP lamellae is related to the surface-induced crystallization and dominated by the interfacial nucleation. Only interfacial nucleation is preferred can epitaxial growth occur. Therefore, retarded crystallization, realized by either strong confinement in finer domains or rapid cooling or both, is favorable for it.  相似文献   

19.
The crystalline morphologies of isothermally and nonisothermally crystallized poly(phenylene sulfide) (PPS) and its blend with polyamide 66 (PA66) were investigated by polarized optical microscopy with a hot stage. The spherulite superstructure of PPS was greatly affected by crystallizable PA66; a Maltese cross was not clear, and the impingement between spherulites disappeared. This could be ascribed to the formation of small crystals of PA66, which filled in the PPS lamellae. The nonisothermal crystallization behavior was also measured by differential scanning calorimetry. The presence of PA66 changed the nonisothermal crystallization process of PPS. The maximum crystallization temperature of the PPS phase in the blend was higher that that of neat PPS, and this indicated that PA66 acted as a nucleus for PPS. Also, the compatibilizer poly(ethylene‐stat‐methacrylate) (EMA) was added to modify the interfacial interplay of the PA66/PPS blend system. The addition of EMA greatly influenced the nonisothermal crystallization process of the PPS phase in the blend system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Optical microscopy, differential scanning calorimetry, and small‐angle X‐ray scattering techniques were used to study the influence of crystallization conditions on the morphology and thermal behavior of samples of ternary blends constituted by isotactic polypropylene (iPP), atactic polystyrene (aPS), and a novel graft copolymer of unsaturated propylene with styrene (uPP‐g‐PS) with the purpose of assessing the uPP‐g‐PS capability to act as a compatibilizer for iPP/aPS materials. It was shown that the presence of the uPP‐g‐PS copolymer affects the interfacial tension between the iPP and aPS phases in the melt state, with the aPS particle size and the particle‐size distribution being, in fact, strongly modified. In samples of iPP/aPS/uPP‐g‐PS blends, isothermally crystallized from the melt at a relatively low undercooling in a range of the crystallization temperature of the iPP phase, the addition of the uPP‐g‐PS copolymer induced a drastic change both in the aPS mode and the state of dispersion and in the iPP spherulitic texture and inner structure of the spherulite fibrils. In particular, the phase structure developed in the iPP/aPS/uPP‐g‐PS materials was characterized by a crystalline lamellar thickness of the iPP phase comparable to that shown by the plain iPP. The extent of the induced modifications, that is, the degree of compatibilization achieved, resulted in a combined effect of composition and undercooling. Also, relevant thermodynamic parameters of the iPP phase, such as the equilibrium melting temperature (Tm) and the folding surface free energy (ςe) of the lamellar crystals, were found to be influenced by the presence of the uPP‐g‐PS copolymer. A linear decrease of the Tm and ςe values with increasing uPP‐g‐PS content was, in fact, observed. Such results have been accounted for by an increase of the presence of defects along the iPP crystallizable sequences and by the very irregular and perturbed surface of the crystals with increasing copolymer content. The observed decrease in Tm values revealed, moreover, that, in the iPP/aPS/uPP‐g‐PS blends, the iPP crystal growth occurs under comparatively lower undercooling, in line with higher crystalline lamellar thickness shown by SAXS investigation. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1429–1442, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号