首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2023,49(5):7341-7349
Understanding pressure-induced acoustic velocity-elasticity behavior has extraordinary significance in the fields of materials science and earth science. Herein, we used an advanced high-pressure high-temperature (HPHT) method to synthesize pure-phase β-Mo2C bulk ceramics. The sound velocity-elasticity behavior, thermodynamic properties, and mechanical behavior of the synthesized β-Mo2C ceramics were systematically investigated by in-situ high-pressure ultrasonic interferometry and theoretical calculations. The compressive and shear wave velocities, isothermal bulk modulus, shear modulus, Vickers hardness, fracture toughness, Debye temperature, and melting temperature of polycrystalline β-Mo2C exhibited a monotonic increase with increasing pressure. The experimental and calculation results showed that β-Mo2C had strong ductile behavior and was a ductile ceramic. Additionally, the temperature-hardness relationship of the as-synthesized polycrystalline β-Mo2C was investigated by in-situ high-temperature Vickers indentation measurements. The hardness of β-Mo2C gradually decreased with increasing temperature, and this ceramic still maintained a hardness as high as 12.3 GPa at 500 °C. These results suggest that the intrinsic mechanical and thermodynamic properties of β-Mo2C are dominated by its unique electronic structure and bonding mode.  相似文献   

2.
A systematic study of boron trioxide under high pressure and high temperature (HPHT) was conducted using a Chinese multi-anvil high-pressure apparatus (CHPA). The HPHT phase diagram was determined using X-ray diffraction measurements. Under high pressure (3.6–5.5?GPa) and low temperature (below 450?°C), the boron trioxide grains were reduced to the nanometer size and the hardness reaches to 13.9?GPa (5.5?GPa and 450?°C). The boroxol rings were produced only in the glass phase that was transformed from the α-B2O3 phase under HPHT. And the formation mechanism of boroxol rings was discussed according to Raman spectrum and crystal structure of α-B2O3 and β-B2O3.  相似文献   

3.
Dense alumina composites with different carbon nanotube content were prepared by colloidal processing and consolidated by Spark Plasma Sintering (SPS). Single-wall carbon nanotubes (SWNTs) were distributed at grain boundaries and also into agglomerates homogeneously dispersed. Carrying out Vickers hardness tests on the cross-section surfaces instead of top (or bottom) surfaces has shown a noticeable increase in the reliability of the hardness measurements. This improvement has been mainly attributed to the different morphology of carbon nanotube agglomerates, which however does not seem to affect the Vickers hardness value. Composites with lower SWNT content maintain the Vickers hardness of monolithic alumina, whereas it significantly decreases for the rest of compositions. The decreasing trend with increasing SWNT content has been explained by the presence of higher SWNT quantities at grain boundaries. Based on the results obtained, a method for optimizing Vickers hardness tests performance on SWNT/Al2O3 composites sintered by SPS is proposed.  相似文献   

4.
《Ceramics International》2021,47(22):31852-31859
The primary purpose of this work is to introduce the second phase of graphene (G) into non-stoichiometric TiO1.80 successfully and optimize the thermoelectric properties of this composite material through high pressure and high temperature (HPHT) technology. The purpose of doping Ti powder under high pressure is to create a closed reducing atmosphere to change the ratio of titanium to oxygen in the titanium oxide base. The addition of graphene can considerably improve the electrical properties of the material and reduce its resistivity. An X-ray diffractometer, X-ray photoelectron spectrometer, scanning electron microscope, and transmission electron microscope were used to analyze and characterize the phase structure, chemical bond, micro morphology and crystal morphology of the samples. An abundance of grain boundaries and lattice dislocation defects can inhibit the lattice thermal conductivity. We also tested and analyzed the thermoelectric performance of the high-temperature and high-pressure synthetic samples through a variable temperature system. The variation of the absorption intensity of the ultraviolet UV spectrum with wavelength shows that high pressure can reduce the band gap, which is beneficial to the carrier transition and improves the conductivity of semiconductors. HPHT optimizes both the electrical and the thermal parameters of the sample. At a final sintering pressure of 5.0 GPa, the dimensionless figure of merit (zT) of the bulk composite material G/TiO1.80 was found to be 0.23 at 700 °C.  相似文献   

5.
6.
设计玻璃组成及晶化工艺提高Li2O-Al2O3-SiO2微晶玻璃的强度是当前亟需解决的问题。本文通过熔融浇铸法制备了具有特定组成的Li2O-Al2O3-SiO2玻璃,通过两步热处理方法制备了高强度半透光微晶玻璃。差示扫描热分析结果显示玻璃的转变温度为532 ℃,且有多个析晶峰。热处理后,X射线衍射证明了玻璃中析出以Li2Si2O5、LiAlSi3O8、LiAlSi4O10为主晶相的晶体,且随着热处理温度的上升或时间延长,透锂长石逐渐转变为锂辉石晶相,晶粒尺寸也从70 nm(热处理条件为:750 ℃,0.5 h和780 ℃,10 h)生长至340 nm(热处理条件为:820 ℃,0.5 h和850 ℃,4 h),微晶玻璃从半透光转变为完全乳浊。微晶玻璃具有优异的机械性能,维氏硬度最大可达9.15 GPa,环上环的最大负载可达1 335 N,最大整机跌落高度可达162 cm。此微晶玻璃可用于手机等电子器件的背板保护玻璃。  相似文献   

7.
《Ceramics International》2017,43(9):7172-7176
Boria (B2O3)-added forsterite (Mg2SiO4) ceramics were synthesized and their properties were characterized. The addition of B2O3 was aimed to produce high density forsterite ceramics at a low sintering temperature. The raw materials were purified silica sand and commercial magnesia powders. Fosterite powder was produced from a solid reaction between the raw powders at 1100 °C prior to addition of B2O3, uniaxial pressing and sintering at 1200 °C. The amount of added B2O3 varied between 0%, 4%, and 8% by weight. Elemental analysis was performed by X-ray fluorescence (XRF) spectroscopy on the purified silica powder, whereas phase analyses were obtained from X-ray diffraction (XRD) data. Characterization of the ceramics included diameter shrinkage, density-porosity, thermal expansion, Vickers hardness, and dielectric constant. The results showed that the silica powder contained 98.7 at% Si with minor impurities, including 0.5 at% Ti, but the only identified crystalline phase was quartz. Further phase analysis of the ceramics showed that the addition of B2O3 reduced the amount of formed forsterite and increased the amount of cristobalite, proto- and clino-enstatite (MgSiO3) as well as suanite (Mg2B2O5). The highest forsterite content was found in B2O3-free ceramics, approximately 88.1 wt%. Moreover, the addition of B2O3 also reduced the diameter of the sample by more than 21%, resulting in a very dense ceramic with an apparent porosity of only 0.3%. The Vickers hardness significantly increased from 0.3 GPa for the B2O3-free ceramic to 10.9 GPa for the 4% B2O3 sample. The dielectric constant of the B2O3-added forsterite ceramics was improved by approximately 2–6 times that of the B2O3-free ceramic, which was primarily attributed to the loss of porosity in the samples.  相似文献   

8.
We report the synthesis of alumina/stishovite nano‐nano composite ceramics through a pressure‐induced dissociation in Al2SiO5 at a pressure of 15.6 GPa and temperatures of 1300°C‐1900°C. Stishovite is a high‐pressure polymorph of silica and the hardest known oxide at ambient conditions. The grain size of the composites increases with synthesis temperature from ~15 to ~750 nm. The composite is harder than alumina and the hardness increases with reducing grain size down to ~80 nm following a Hall–Petch relation. The maximum hardness with grain size of 81 nm is 23 ± 1 GPa. A softening with reducing grain size was observed below this grain size down to ~15 nm, which is known as inverse Hall–Petch behavior. The grain size dependence of the hardness might be explained by a composite model with a softer grain‐boundary phase.  相似文献   

9.
Coincidence Doppler broadening of annihilation radiation (CDBAR) and Vickers hardness techniques were performed to study pure Al2O3, pure polyvinyl chloride (PVC), and doped PVC with different concentrations of Al2O3 (10–50%). The CDBAR ratio curves with respect to pure PVC were presented and reflect the momentum distribution of all the samples. The peak around 14.5 ×10?3 moC in the CDBAR ratio curves suggests a large contribution of positron annihilation with the Al2O3. There is a linear correlation between the height of this peak and the Al2O3 concentration. The S‐ and W‐parameters were extracted from the CDBAR spectra and increase with increasing the Al2O3 concentration showing discontinuity at 30% of Al2O3 concentration on PVC. The present data confirmed that there is no positronium formation in pure Al2O3 as a result of smaller S‐parameter. The Vickers hardness increases with increasing the Al2O3 concentration in PVC showing a linear dependence with two different slopes depend on the Al2O3 concentration range. A correlation between the Vickers hardness (macroscopic data) and the W‐parameter (microscopic data) was observed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
《Ceramics International》2023,49(5):7737-7745
Glass-ceramics without nucleating agents usually undergo surface crystallization, which deteriorates the overall performance of the products. In this paper, we evaluated the effects of the metastable MgAl2Si3O10 crystalline phase on the crystallization behavior of a MgO–Al2O3–SiO2 (MAS) glass without nucleating agents and mechanical properties of the glass-ceramics obtained. The results demonstrated that the precipitation of metastable MgAl2Si3O10 crystallites promotes the crystallization mechanism transformed from surface crystallization into volume crystallization with two-dimensional crystal growth. Furthermore, the grain size of MgAl2Si3O10 near the surface of the prepared glass-ceramics was larger than that of MgAl2Si3O10 inside, which helps to generate compressive stress and improves its mechanical properties. The glass-ceramics containing metastable MgAl2Si3O10 phase exhibited an enhanced hardness in the range of 7.6 GPa–9.5 GPa for indentation loads ranging from 2.94 N to 98 N, and indentation size effect behavior was observed in Vickers hardness tests of both MAS glass and glass-ceramics. The load-independent hardness values for MAS glass and glass-ceramics were reliably evaluated by the modified proportional specimen resistance (MPSR) model of 7.1 GPa and 7.6 GPa, respectively, with a high correlation coefficient of more than 0.9999. This work reveals the unexploited potential of the metastable phase in improving the crystallization ability and mechanical properties of glass-ceramics.  相似文献   

11.
Type II high-pressure synthetic diamond crystals were examined with cathodoluminescence (CL) spectroscopy and topography before and after high pressure and temperature (HPHT) treatment around 6 GPa and 1600 °C. We found that the HPHT treatment produced mosaic patterns in the CL image and the 2BD(F) bands in the CL spectra, which are commonly seen in type II natural diamond. Polarized optical microscopic observation revealed that a birefringence pattern similar to that of natural diamond is formed with the HPHT treatment, indicating that plastic deformation was produced by the treatment. The present study, therefore, confirmed that the mosaic patterns in the CL image and 2BD bands were formed by plastic deformation.  相似文献   

12.
《Ceramics International》2022,48(11):15136-15143
A series of graphene-S0.05Co4Sb11.6Te0.4 (Cx-S0.05Co4Sb11.6Te0.4) composite polycrystalline skutterudite materials with graphene stoichiometric ratio of x = 0, 0.05, 0.10, 0.20 have been successfully prepared by high pressure and high temperature (HPHT) technology. Graphene is a two-dimensional material with large carrier mobility and large specific surface area. Through microscopic observation, it is found that graphene is attached to the grains in the sample. At the same time, with the increase of graphene content, grain growth is inhibited. Graphene addition reduces the thermal conductivity of skutterudite by increasing grain boundaries and achieves the purpose of optimizing its thermoelectric properties. At the same time, there are numerous lattice defects and distortions introduced in skutterudite synthesized by HPHT technology. Finally, the samples were synthesized under the conditions of 1.5 GPa and 900 K. The lattice thermal conductivity of the graphene composite sample Cx-S0.05Co4Sb11.6Te0.4 with x = 0.10 reaches a minimum of 0.99 at 773 K, and the zT value of this sample is 1.25 at 773 K, which is greater than pure S0.05Co4Sb11.6Te0.4, its zT value is 1.00 at 773 K. Compared with the method of synthesizing skutterudite under normal pressure, the HPHT technology can dramatically reduce the reaction time from several days to less than 30 min, while forming a high-pressure airtight reaction environment, which can effectively prevent the volatilization and oxidation of samples during the reaction process, thus providing a convenient method for synthesizing thermoelectric materials quickly and efficiently.  相似文献   

13.
以电熔镁砂为主要原料,研究了添加剂α-Al2O3和Cr2O3的加入量及加入形式对镁质材料高温蠕变性能的影响,还研究了在加入3%Cr2O3的基础上添加不同形式的Al2O3对镁质材料高温蠕变性能的影响。研究结果表明:随着Al2O3含量的增加,镁质材料的抗高温蠕变性能增强;添加3%Cr2O3的镁质材料其抗蠕变性能优于热风炉上使用的低蠕变高铝制品。  相似文献   

14.
Composites of Al2O3/ZrO2 (containing 25, 50, and 75 vol% ZrO2) were prepared by mixing Al2O3 and ZrO2 suspensions. The microstructural control via two-step sintering (TSS) was the main objective of this work. For this purpose, different sintering curves were constructed, aiming to achieve the best temperature combination for the sintering steps that provides higher density and finer microstructure. The results were compared with single-step sintering (SSS). Furthermore, microhardness and fracture toughness were measured for the best TSS specimens under each composition. The results showed that the high densities were obtained, and the reduction of grain size was greater than 40% for two-step sintered specimens, compared to SSS ones. Consequently, microhardness values increased. However, fracture toughness values remained unchanged.  相似文献   

15.
王志刚  杨波  曾辰  李智  邓健怡 《中国塑料》2022,36(10):84-89
将一批聚乙烯燃气管道试样置于80 ℃、1.1 MPa水浴环境下进行老化试验,老化时间分别为0、165、500、1 000 h,并通过差示扫描量热法(DSC)、热失重分析(TG)、傅里叶变换红外光谱分析(FTIR)和拉伸试验分别测试各老化试样对应的氧化诱导时间(等温OIT)、热分解温度(Ts)、官能团组成和断裂伸长率(ε),模拟分析高温内压环境下聚乙烯管道的老化性能变化规律。DSC、TG和拉伸试验结果显示,随着老化时间增加,聚乙烯管道的等温OIT、Tsε都逐渐降低,老化程度逐渐增加,并且管内壁的老化速率明显大于外壁;FTIR结果显示,随着老化时间增加,聚乙烯管材料的官能团谱图中1 720 cm-1和3 400 cm-1处分别出现了C=O和O—H的振荡峰,进一步证实了聚乙烯管材料分子链中引入了氧化反应产物。  相似文献   

16.
《Ceramics International》2019,45(12):14789-14793
In this work, compressive deformation is performed on bulk amorphous Al2O3-ZrO2-Y2O3 at moderate temperatures. The amorphous samples display brittle fracture without any noticeable permanent strain at 500 °C. However, a large plastic strain of up to 15.1% is achieved at 600 °C. During the entire compressive deformation process, the samples remain amorphous, and shear bands start to form, accompanied by a stress drop. The amorphous AZY shows low Vickers hardness value of 2.8 GPa at 500 °C, and 2.2 GPa at 600 °C, due to the disordering microstructure. In the optical microscope images, local plastic deformation are detected around the indention without large cracks. Transmission electron microscopic observations and selected area electron diffraction analysis suggest that the shear band formation originates from the presence of free volume. Furthermore, the nucleation and propogation of shear bands lead to the large macroscopic plastic strain in the bulk amorphous Al2O3-ZrO2-Y2O3.  相似文献   

17.
以电熔刚玉(骨料和细粉)和Si粉(加入质量分数为5%或8%)为原料,以纸浆废液为结合剂,压制成Al2O3-Si样坯,在1000~1600℃埋炭加热后,检测其物相组成、显微结构和性能的变化。结果表明:(1)1100℃以前物相和结构没有变化;(2)1200℃烧后,Si开始与CO反应生成晶须状SiC,且晶须相互交叉连锁,材料开始烧结,其高温抗折强度和抗热震性明显提高;(3)1300~1400℃烧后,SiC晶须生成量明显增加,且发育长大,形成交叉连锁的网络结构填充在刚玉骨架中,材料烧结良好,具有更高的高温强度和更好的抗热震性,而且1400℃烧后试样中还出现少量O’-SiAlON晶体;(4)1500~1600℃烧后,SiC晶体发育长大,呈枝杈状和弯曲状,SiC生成量略有增加,试样的高温强度和抗热震性变化不明显,表明在此温度范围材料烧结基本完成。  相似文献   

18.
For Al2O3/ZrO2 (4Y) composites prepared by SHS under high gravity, the correlation between the microstructure and properties of the materials was investigated by adjusting the ZrO2 (4Y) content. The results indicated that, as the volume fraction of ZrO2 (4Y) was below 37%, the composite ceramics were mainly composed of the rod-shaped and randomly-orientated colonies in which nano-micrometer tetragonal ZrO2 fibers were embedded; as the volume fraction of ZrO2 (4Y) was above 40%, the composite ceramics in the matrix of micrometer sphere-like tetragonal ZrO2 grains were obtained. The mechanical properties showed that Al2O3/33% ZrO2 (4Y) not only had the maximum values of the relative density and hardness because of the low solidification temperature and the highest volume fraction of the colonies but also the maximum flexural strength value due to the small size of defects and high fracture toughness supported by the crack-deflection and crack-bridging toughening mechanisms.  相似文献   

19.
《Ceramics International》2017,43(7):5708-5714
Corrosion behavior of self-sintered, ternary-layered titanium silicon carbide (Ti3SiC2) and titanium aluminum carbide (Ti3AlC2) fabricated by an in-situ solid-liquid reaction/hot pressing process was investigated by potentiodynamic polarization, potentiostatic polarization and electrochemical impedance spectroscopy in a 3.5% NaCl solution. Commercially pure titanium (Ti) was selected for comparison through XRD, XPS, SEM and EDS examinations for elucidating both the passivation behavior and corrosion mechanism of the alloys. Both Ti3SiC2 and Ti3AlC2 exhibited significantly superior passivation characteristics compared to Ti; Ti3SiC2 also showed better corrosion resistance. The silicon/aluminum site is prone to attack, and the difference in the diffusion rate between the A-site atoms and titanium decreases the passivation ability of the MAX phase. CP titanium exhibited a lower passivation current density and did not undergo breakdown in the test potential region while two MAX phases are destroyed. Nevertheless, the corrosion resistances of Ti3SiC2 and Ti3AlC2 are comparable to that of CP titanium.  相似文献   

20.
采用等体积浸渍法制备了一系列不同Ni和Fe添加量的Ni-Fe/BaTiO3/γ-Al2O3双金属催化剂,并在固定床反应装置上考察了在873~1 073 K温度范围内催化剂对CO2和CH4重整反应的催化活性。实验结果表明:Ni、Fe负载质量分数均为5.0%的Ni-Fe/BaTiO3/γ-Al2O3催化剂活性最好。通过TPR、TPD和TPO表征并与单金属催化剂Ni/BaTiO3/γ-Al2O3相比,Ni-Fe/BaTiO3/γ-Al2O3催化剂具有更高的催化活性、脱附和抗积炭性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号