首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 58 毫秒
1.
研究了轴箱横向载荷高精度测试方法,将经过标定的轴箱安装于运用车辆,获得了载荷-时间历程,结合车辆运行状态分析了在高速线路典型服役条件下的载荷特性,编制了对应于进出站工况、低速运行、高速运行的恒幅载荷谱。研究结果表明:轴箱横向载荷影响因素主要为列车运行速度、曲线半径、道岔、轨道不平顺;运行中普遍存在着相对固定且与车辆运行速度无关的2 Hz的低载荷主频;对于大于5 Hz的频率,载荷主频与列车的运行速度直接相关,曲线通过时内轨侧轴箱载荷变化幅值稍大于外轨侧,且载荷均值以及最大载荷幅值均随列车运行速度的增大而增大;曲线半径增大的同时横向载荷均值逐渐接近于0,最大载荷幅值也逐渐减小;进出站道岔会造成横向载荷出现约10 s的一次波动,同时包含短时间冲击载荷;横向轨道不平顺会造成轴箱横向载荷在通过相应区间时出现多个大幅波动,随着运行速度的增加,波动周期缩短,峰值减小;进出隧道对横向载荷影响不明显;对于不同运行工况下的载荷谱,进出站工况载荷幅值最大,作用频次占很少部分;低速运行载荷幅值次之,作用频次占比约为1/3,高速运行载荷幅值最小,作用频次占比达到60%以上。  相似文献   

2.
基于阿尔斯通公司和长春轨道客车股份有限公司提供的CRH5动车组CA250转向架及车体模型、基本结构参数及仿真报告,利用多体动力学仿真软件ADAMS(RAIL/VIEW模块)建立转向架及整车动力学仿真模型.首先对中国车轮踏面LM和LMA、欧洲车轮踏面S1002、应用在TGVA和KTX(韩国TGV)上的特殊车轮踏面XP55与UIC60kg轨面匹配分别进行等效锥度计算和对比,然后根据线性及非线性临界速度分析方法对拖车(满载)进行横向稳定性仿真分析,最后进行了不同轮轨匹配状况下的曲线通过性能仿真.重点分析不同匹配参数及轮对定位方式对整车动力学性能的影响.  相似文献   

3.
基于阿尔斯通公司和长春轨道客车股份有限公司提供的CRH5动车组CA250转向架及车体模型、基本结构参数及仿真报告,利用多体动力学仿真软件ADAMS(RAIL/VIEW模块)建立转向架及整车动力学仿真模型.首先对中国车轮踏面LM和LMA、欧洲车轮踏面S1002、应用在TGVA和KTX(韩国TGV)上的特殊车轮踏面XP55与UIC60 kg轨面匹配分别进行等效锥度计算和对比,然后根据线性及非线性临界速度分析方法对拖车(满载)进行横向稳定性仿真分析,最后进行了不同轮轨匹配状况下的曲线通过性能仿真.重点分析不同匹配参数及轮对定位方式对整车动力学性能的影响.  相似文献   

4.
5.
根据地铁车辆运行工况的复杂性,首先对地铁车辆线路工况进行划分,并基于此提出了能够计及线路超高、钢轨波磨和车轮不圆度的轴箱轴承寿命计算方法,然后利用所提出的计算方法对某地铁车辆轴箱轴承寿命进行了计算,并根据计算结果选择合理的钢轨打磨和车辆镟修时机,从而以最低的线路及车辆维护费用延长轴箱轴承的使用寿命.算例中,车辆的车轮不圆度对轴承寿命影响最为显著,由车轮不圆度导致轴承寿命最大下降34.1%,而钢轨波磨引起的轴承寿命下降最大为5.6%,曲线超高引起轴箱轴承寿命的下降为2.8%;根据计算结果,提出将轴箱垂向振动加速度30g和3g分别作为线路维护车轮镟修的临界点.  相似文献   

6.
为了更好地研究高速轨道车辆舒适性的影响因素,建立CRH5动车组模型并进行编组列车舒适性评价.根据DellNer联结器的迟滞曲线,以变刚度变阻尼纵向悬挂作为车间联接.基于3种高铁轨道谱的舒适性评价对比表明:英国小缺陷谱较好地反映了高速客运专线的实际情况.基于英国小缺陷谱的舒适性评价与ALSTOM的评价结果进行了对比,由于...  相似文献   

7.
为研究60N钢轨350 km/h 18号高速道岔合理的轨距和轨底坡,利用60N钢轨高速道岔关键断面和实测LMA磨耗车轮,基于迹线法原理和Kalker三维非赫兹滚动接触理论,分析不同轨距和轨底坡参数下的轮轨接触几何和力学特性,并与CHN60钢轨高速道岔计算结果进行对比. 结果表明:在保证安全的前提下适当将轨距加宽可改善轮轨匹配关系,提升列车过岔平稳性,减小轮对横移量大于8 mm时的轮轨接触应力和表面滚动接触疲劳因子,延长尖轨使用寿命;轨底坡为1/30、1/40和1/50时,轮轨接触参数相差较小,匹配性能较优;轨底坡为1/10和1/20时,横向不平顺和轮轨滚动接触疲劳因子普遍较大,且1/10轨底坡对车轮磨耗的适应性较差;与CHN60钢轨高速道岔相比,60N钢轨高速道岔的等效锥度普遍更小,列车过岔平稳性更优;车轮磨耗易导致车轮在轮轨过渡区段空转,引起尖轨伤损.   相似文献   

8.
为研究直线电机地铁车辆系统在轮轨几何不平顺激振作用下的动态行为,基于车辆-轨道系统耦合理论,建立了考虑直线电机子系统的地铁车辆-轨道耦合系统动力学模型.应用该模型研究了车轮非圆化、钢轨焊接接头几何不平顺以及钢轨波磨对车辆和直线电机系统的振动响应、轮轨作用力及车辆稳定性等特性的影响.研究结果表明,几何不平顺中长波(大于1 m)影响气隙波动,短波(小于1 m)造成轮轨剧烈冲击振动,需特别注意钢轨焊接接头,其可使轮轨作用力增大1.5倍,气隙降低2~3 mm,轮轨甚至发生分离.   相似文献   

9.
为探究高速列车齿轮箱箱体振动特性和疲劳损伤, 应用小滚轮高频激励台架试验, 将滚轮表面加工成径跳量幅值为0.05 mm的13阶多边形, 可等效成20阶车轮多边形, 研究了某型齿轮箱箱体在不同垂向载荷与速度工况下的振动特性; 通过雨流计数法及Miner线性损伤法则, 分析了齿轮箱箱体单位时间应力累计损伤。研究结果表明: 受齿轮箱箱体共振影响, 不同垂向载荷与速度工况下, 高速列车运行速度为200 km·h-1时, 齿轮箱箱体各测点的垂、横向加速度均方根值均为最小; 当垂向载荷为23 t时, 大部分测点的垂、横向加速度均方根值均为最大; 齿轮箱箱体存在573 Hz的局部固有频率被激发共振, 其原因是试验速度为100 km·h-1时试验台发生共振, 以及试验速度为300 km·h-1时, 受到20阶多边形车轮转频约580 Hz的主频激扰; 车轮初始速度从0加速到200 km·h-1及从300 km·h-1减速至0的速度等级之间时, 齿轮箱箱体各测点的单位时间应力累计损伤波动较大, 其余速度等级段各测点的单位时间应力累计损伤波动很小; 单位时间应力损伤最大值出现在大齿轮箱齿面观察孔, 为3.72×10-10, 损伤最小值位于小齿轮箱轴承正上方, 仅为8.29×10-18。可见, 箱体共振、试验台减速运行、速度等级对齿轮箱箱体振动加速度影响较大; 非共振、试验台不减速运行、相同速度等级下, 垂向载荷对单位时间应力累计损伤影响甚微。  相似文献   

10.
为了研究重载机车轮轨接触损伤问题,建立重载列车-轨道三维耦合动力学模型,研究车轮多边形与多种轨面摩擦条件下的机车轮轨系统动态相互作用行为.在此基础上,建立基于轮轨系统动力学响应的车轮踏面疲劳损伤预测模型,研究制动工况和轮轨接触表面变摩擦条件下车轮多边形磨耗对车轮表面磨损的影响.结果表明:严重的车轮多边形磨耗不仅加剧轮轨动态相互作用,也会增大轮轨接触界面磨耗损伤;在干燥接触条件下,车轮多边形会加剧车轮踏面疲劳损伤,车轮多边形导致机车第1位轮对和第4位轮对的损伤指数波动范围较正常车轮损伤指数的波动范围增大19.59%和39.43%;在低黏着接触条件下,车轮多边形会加剧车轮磨耗,车轮多边形导致轮轨蠕滑力波动增大5.85倍,使得机车第1位轮对和第4位轮对的磨耗数波动范围增大6.44倍和6.22倍.  相似文献   

11.
开展了EA4T合金钢材料的低周疲劳试验、旋转弯曲高周疲劳试验与裂纹扩展速率试验, 考虑载荷类型、表面质量与尺寸系数等因素, 修正了标准小试样疲劳极限以预测全尺寸车轴的疲劳性能; 建立了轴箱内置铁路车轴(内箱车轴) 的有限元模型, 分析了内箱车轴与传统轴箱外置铁路车轴(外箱车轴) 临界安全部位的差异; 基于安全寿命设计理论, 结合修正的线性Miner疲劳累积损伤准则和载荷谱, 研究了内箱车轴的疲劳强度与服役性能; 分别采用Paris公式、NASGRO方程和LAPS模型拟合了裂纹扩展速率曲线, 基于损伤容限设计方法估算了内箱车轴和外箱车轴的裂纹扩展寿命。研究结果表明: 标准小试样的疲劳极限明显高于全尺寸车轴, 其疲劳极限均值分别为369、286 MPa; 与传统外箱车轴相比, 由于加载位置的改变, 内箱车轴的临界安全部位从卸荷槽处转移至轴身中部; 内箱车轴疲劳总寿命为2.5×1012 km, 满足30年服役寿命的设计要求; 但是在运输或服役过程中车轴表面不可避免会存在缺陷, 缺陷处存在严重的应力集中, 为裂纹的萌生和扩展提供了便利条件, 使车轴疲劳寿命大幅降低; 当车轴临界安全部位的裂纹深度扩展到5 mm时, 内箱车轴和外箱车轴的剩余寿命分别仅为3.2×105、2.0×105 km, 应根据无损探伤精度合理制定无损检测周期, 确保车轴安全服役。  相似文献   

12.
为更深入全面了解高速列车系统动力学研究现状,综述了高速列车动力学性能对车辆运行稳定性、安全性和平稳性的影响,总结了列车安全评价方法和动力学试验方法在车辆动力学中的应用,基于轮轨间作用力,分析了轮轨磨耗对列车动力学性能的影响,概括了车-桥耦合模型、弓网系统以及列车空气动力模型在车辆系统动力学中的研究内容。分析结果表明:车轮异常磨耗会导致舒适性下降,合理的车轮镟修能有效降低车轮非圆化和车辆系统关键部件的振动,降低车内振动噪声,增加列车运行稳定性、安全性和平稳性;合适的轮对定位刚度和抗蛇行减振器的刚度和阻尼有利于提高列车蛇行运动稳定性和转向架运动临界速度;钢轨波磨严重时会导致钢轨扣件松动,缩短车辆构架和钢轨的使用寿命;通过合理的钢轨廓型打磨可消除曲线波磨,改善轮轨关系;行波效应对车辆安全性影响很大,与相同激励下的各项参数相比,车速为350 km·h-1、行波速度为300 m·s-1时的脱轨系数、轮重减载率和轮轨横向力都有所降低;横风作用下受电弓气动抬升力增大,影响接触网安全,增大弓头阻尼和弓头刚度可改善弓网受流特性。  相似文献   

13.
实测了城市轨道交通简支箱梁各板件的振动与近场噪声, 结合板件声辐射理论研究了箱梁结构振动辐射噪声和箱梁振动的关系; 基于箱梁结构噪声易产生绕射的低频特性, 计算了矩形混凝土板件在不同开孔工况下辐射的结构噪声变化情况; 在考虑箱梁腹板开孔的基础上建立了车辆-轨道-箱梁耦合有限元模型和箱梁振动-结构噪声有限元-无限元模型, 分析了箱梁腹板开孔前后各板件的振动和结构辐射噪声变化情况。研究结果表明: 箱梁板件声辐射效率随频率的增加并不呈现线性关系, 箱梁各板件近场低频(低于250 Hz) 辐射噪声与结构振动加速度级也并非简单的线性关系, 箱梁辐射噪声由箱梁振动和箱梁各板件声辐射效率共同决定; 对于两端简支的开孔板件, 在开孔率基本一致(0.4%左右) 的情况下, 开孔直径越小, 板件振动辐射噪声声压级越小; 采用有限元-无限元方法模拟箱梁近场低频结构噪声, 既能解决单独采用有限元法时声场边界反射的影响, 也避免了采用有限元-边界元方法时多软件交叉使用的不便; 腹板开孔虽然增加了箱梁板件在某些频率(100~125 Hz) 处的振动响应, 但由于箱梁内、外部声场连通, 使得声短路效应增加, 降低了板件的声辐射效率和相应频段的噪声; 腹板开孔后在1~250 Hz频段内顶板、底板和腹板附近的总声压级分别降低了9.43、2.74和1.63 dB, 从而使箱梁结构噪声得到了控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号