首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
自新型冠状病毒肺炎(COVID-19)爆发以来,准确高效、快速便捷的新型冠状病毒(SARS-CoV-2)筛查越来越在疫情防控中体现出其重要性.传统的检测方法无法满足短时间内SARS-CoV-2大规模感染时的检测需求.生物传感技术具有灵敏度高、选择性好、低成本、易于微型化等优点,其检测时间短的优势还可用于开发即时检测设备,是临床诊断中实时检测SARS-CoV-2的潜在替代方案.本综述简要阐述了光学生物传感器、电化学生物传感器、可穿戴式生物传感器、磁性生物传感器、金纳米颗粒生物传感器以及适配体生物传感器的构建方法、工作原理,并总结了其在新冠病毒检测领域的最新应用.最后本综述对生物传感器在新冠病毒检测领域的技术瓶颈与未来的发展趋势进行了总结与讨论.  相似文献   

2.
新型冠状病毒肺炎爆发以来,如何准确快速地识别感染者是疫情防控的关键。本文系统地介绍已用于新冠病毒临床检测的各类技术,对涉及的生化原理进行深入浅出的阐述,旨在让广大群众更好地了解新冠病毒检测的方法和原理,积极配合医务工作者的工作,增强战胜新冠疫情的信心。  相似文献   

3.
4.
《分析试验室》2021,40(7):745-760
新型冠状病毒(SARS-CoV-2)及相关新型冠状病毒肺炎(COVID-19)的爆发引起人们对全球健康问题的极大关注,也给全球经济造成了巨大损失。由于SARS-CoV-2具有较长潜伏期及无症状感染者的出现使疫情形势更加严峻,因而对可疑病例进行早期诊断和及时管控是控制病毒传播的重要措施。开发简单、快速、灵敏、准确的SARS-CoV-2诊断技术是疫情防控的关键。本文对SARS-CoV-2的结构进行了简单介绍,对目前常用的SARS-CoV-2诊断技术的研究现状进行了详细介绍,并对有望应用于即时医疗的检测技术进行了概述,对未来的发展趋势进行了展望,以期为研究人员开发高度准确、廉价、便携的SARSCoV-2诊断技术提供研究思路,为COVID-19及其他新兴传染病的紧急防御和快速部署提供参考。  相似文献   

5.
新冠肺炎疫情的爆发使人们对即时检测(POCT)的需求不断增加,而智能手机作为目前人类最离不开的工具,在POCT中具有巨大的应用潜力。基于智能手机的POCT有以下独特的优点:(1)操作简单,不需要专业培训;(2)无需长时间等待,可以及时获得测试结果;(3)制作成本低,有利于在资源有限地区使用。因此,基于智能手机的POCT正迅速成为传统实验室检测的潜在替代方法。在这里,我们以POCT所检测的对象(体液、挥发性有机化合物、生命体征)为分类的基础,并结合目前主流的传感策略,包括比色技术、荧光技术、电化学技术、压电传感、热电传感、超声传感、光电传感等,对近三年基于智能手机的传感器在POCT中的应用进行了全面的回顾。我们评估了这些传感器的性能以及发展潜力,此外,还介绍了POCT中使用的新兴技术,如纳米技术、柔性电子器件、微流体技术、生物可降解技术、自供能技术、多路检测等。最后,总结了目前基于智能手机的POCT面临的问题,并对其未来的发展进行了展望。  相似文献   

6.
免疫层析技术具有快速、成本低廉、操作简便、可视化分析等优势,已广泛应用于食品安全、环境监测及临床诊断等领域。基于颜色深浅进行结果判读的传统免疫层析技术,存在检测灵敏度低、难以实现定量分析等问题。表面增强拉曼散射(SERS)与免疫层析联合的技术提供了一个强大的分析平台,能够实现对分析物的多重、超灵敏及定量检测。本文从检测原理及类型、标签筛选、分析策略设计等方面简述了SERS免疫层析快速检测技术,归纳了其在致病菌、病毒、农兽药残留、真菌毒素等危害物检测方面的最新研究进展,并且对SERS免疫层析技术的研究方向与发展前景进行了分析和展望。  相似文献   

7.
侧流免疫层析技术(lateral flow immunoassay, LFIA),是一种将色谱层析和免疫技术相结合的快速分析方法,为黄曲霉毒素B1(AFB1)的现场快速检测提供了一个良好平台。本文从比色和荧光两种方法介绍了侧流免疫层析技术在AFB1检测中的研究进展,重点阐述不同信号标记材料及其对应方法学,并讨论了目前免疫层析检测的不足及未来发展方向,以期为AFB1的现场即时检测提供参考。  相似文献   

8.
建立了定量检测氟苯尼考的胶体金免疫层析方法.对胶体金标记抗体时溶液pH和抗体浓度、金标抗体用量、检测线上抗原浓度以及检测时间进行了优化.采用胶体金试纸条读取仪测定试纸条检测线和质控线的信号强度,以标准品的浓度为横坐标,阳性样本和阴性样本的检测线/质控线的信号比值(Bx/B0)为纵坐标建立标准曲线.结果表明,胶体金免疫层析试纸定量检测氟苯尼考的线性范围为0.1~1.5 ng/mL,检出限为0.08 ng/mL,检测时间为15 min.本方法具有简便、快速和可定量等特点,适于大批量样品的现场筛查.  相似文献   

9.
通过固相萃取-液相色谱-多级质谱(SPE-LC-MS/MS)联用技术和毒品胶体金免疫层析试剂盒检测法对13种中药及调味品样品中甲基苯丙胺及吗啡分别进行定量分析,依据LC-MS/MS检测结果,对毒品胶体金免疫层析试剂盒检测法进行可靠性评价。实验结果表明:型号1试剂盒对甲基苯丙胺和吗啡的特异性均不高,检测准确率分别为57.7%与78.8%;型号2试剂盒对甲基苯丙胺的特异性不足,准确率为73.1%,但对吗啡的检测准确率达到100%。在利用毒品胶体金免疫层析试剂盒进行毒品快速筛查时,应注重排除干扰因素以提高免疫胶体金层析试剂盒的检测准确度。  相似文献   

10.
黄炎  刘国东  张学记 《化学进展》2020,32(9):1241-1251
2019年12月以来席卷全球的新型冠状病毒(COVID-19)肺炎是一种高传染性疾病,给全球社会、经济和生活带来了巨大的负面影响,严重威胁人类的生命安全。由于尚无用于COVID-19的特定药物或疫苗,快速及时的检测和诊断对于控制疫情至关重要。本文介绍了目前检测COVID-19的方法,主要比较了CT检测、核酸检测和抗体检测在检测COVID-19中各自发挥的作用,总结了各种方法的优势和不足之处,综述了各种方法的最新研究进展。病毒分离是检测病毒感染的黄金标准,但是要求严格的条件,这些条件多数实验室和医院无法满足。CT检查可以直接看到症状,但是存在特异性低的局限;核酸检测能提供直接的证据,是当前检测新型冠状病毒的主要方法,但是存在假阳性;抗体检测能提供非直接的证据,适于进行筛查工作,但是其无法用于感染的早期诊断且可能得到假阳性或假阴性结果。本文提出了联合使用和综合判读可以从技术和时间差上互补,并对未来的发展趋势和研究重点进行了展望。  相似文献   

11.
现场快速定量检测新型冠状病毒(SARS-CoV-2)抗体对于监测新型冠状病毒感染的肺炎患者治疗过程具有重要作用. 目前, 大多数抗体检测采用基于金纳米粒子的免疫层析定性检测, 但该方法仅表现出一种颜色变化, 无法实现现场快速定量检测. 本文采用特异性刻蚀金纳米棒(Au NRs)的方法, 实现了SARS-CoV-2抗体多色彩可视化的现场快速定量检测. 首先, 将SARS-CoV-2重组抗原固定在96孔酶标板上; 随后, 将辣根过氧化物酶标记的酶标抗体与待测抗体结合, 形成抗原-待测抗体-酶标抗体的复合三明治结构, 且酶标抗体与待测抗体浓度呈正相关; 由于酶标抗体可与3,3',5,5'-四甲基联苯胺(TMB)发生特异性反应, 生成TMB2+, 而TMB2+可选择性刻蚀Au NRs, 使得溶液产生丰富多彩的颜色, 即可通过观察溶液颜色变化实现SARS-CoV-2抗体浓度半定量检测. 在最佳条件下, 该方法对SARS-CoV-2 IgM抗体在5.00~200 IU浓度范围内呈良好线性关系, 检出限为1.29 IU, 并具有较高的灵敏度和特异性. 上述方法成功用于COVID-19患者治疗过程中SARS-CoV-2 IgM抗体浓度半定量快速检测.  相似文献   

12.
Simple but robust testing assays are essential for screening and diagnosis of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in COVID-19 pandemic. Here, we described a chemiluminescent imaging assay (CLIA) for sensitive and convenient detection of SARS-CoV-2 nucleocapsid protein (NP) by a target-induced enzyme activity regulation (T-EAR) strategy. The T-EAR used a pair of antibody-DNA probes to recognize SARS-CoV-2 NP and proximity-induce rolling circle amplification for mass-production of pyrophosphate to coordinate with Cu2+, which prevented the reduction of Cu2+ to Cu+ by sodium ascorbate as well as the Cu+-caused inactivation of horseradish peroxidase (HRP). The activity retention of HRP produced strong CL signal for the detection of SARS-CoV-2 NP by catalyzing the oxidation of luminol by H2O2. The T-EAR based CLIA showed a wide detection range from 1 pg/mL to 100 ng/mL (13 fM to 1.3 nM) with the requirement of only 0.75 μL of sample. This CLIA had advantages of good sensitivity, simple wash-free operation, acceptable accuracy, and high-throughput imaging detection, displaying potential applicability in screening assay of COVID-19 infection.  相似文献   

13.
14.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new virus in the coronavirus family that causes coronavirus disease (COVID-19), emerges as a big threat to the human race. To date, there is no medicine and vaccine available for COVID-19 treatment. While the development of medicines and vaccines are essentially and urgently required, what is also extremely important is the repurposing of smart materials to design effective systems for combating COVID-19. Graphene and graphene-related materials (GRMs) exhibit extraordinary physicochemical, electrical, optical, antiviral, antimicrobial, and other fascinating properties that warrant them as potential candidates for designing and development of high-performance components and devices required for COVID-19 pandemic and other futuristic calamities. In this article, we discuss the potential of graphene and GRMs for healthcare applications and how they may contribute to fighting against COVID-19.  相似文献   

15.
Novel coronavirus disease 2019 (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which can be transmitted from person to person. As of September 21, 2021, over 228 million cases were diagnosed as COVID-19 infection in more than 200 countries and regions worldwide. The death toll is more than 4.69 million and the mortality rate has reached about 2.05% as it has gradually become a global plague, and the numbers are growing. Therefore, it is important to gain a deeper understanding of the genome and protein characteristics, clinical diagnostics, pathogenic mechanisms, and the development of antiviral drugs and vaccines against the novel coronavirus to deal with the COVID-19 pandemic. The traditional biology technologies are limited for COVID-19-related studies to understand the pandemic happening. Bioinformatics is the application of computational methods and analytical tools in the field of biological research which has obvious advantages in predicting the structure, product, function, and evolution of unknown genes and proteins, and in screening drugs and vaccines from a large amount of sequence information. Here, we comprehensively summarized several of the most important methods and applications relating to COVID-19 based on currently available reports of bioinformatics technologies, focusing on future research for overcoming the virus pandemic. Based on the next-generation sequencing (NGS) and third-generation sequencing (TGS) technology, not only virus can be detected, but also high quality SARS-CoV-2 genome could be obtained quickly. The emergence of data of genome sequences, variants, haplotypes of SARS-CoV-2 help us to understand genome and protein structure, variant calling, mutation, and other biological characteristics. After sequencing alignment and phylogenetic analysis, the bat may be the natural host of the novel coronavirus. Single-cell RNA sequencing provide abundant resource for discovering the mechanism of immune response induced by COVID-19. As an entry receptor, angiotensin-converting enzyme 2 (ACE2) can be used as a potential drug target to treat COVID-19. Molecular dynamics simulation, molecular docking and artificial intelligence (AI) technology of bioinformatics methods based on drug databases for SARS-CoV-2 can accelerate the development of drugs. Meanwhile, computational approaches are helpful to identify suitable vaccines to prevent COVID-19 infection through reverse vaccinology, Immunoinformatics and structural vaccinology.  相似文献   

16.
In March 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-based infections were declared ‘COVID-19 pandemic’ by the World Health Organization. Pandemic raised the necessity to design and develop genuine and sensitive tests for precise specific SARS-CoV-2 infections detection. Nanotechnological methods offer new ways to fight COVID-19. Nanomaterials are ideal for unique sensor platforms because of their chemically versatile properties and they are easy to manufacture. In this context, selected examples for integrating nanomaterials and distinct biosensor platforms are given to detect SARS-CoV-2 biological materials and COVID-19 biomarkers, giving researchers and scientists more goals and a better forecast to design more relevant and novel sensor arrays for COVID-19 diagnosis.  相似文献   

17.
The high rate of spreading of COVID-19 is attributed to airborne particles exhaled by infected but often asymptomatic individuals. In this review, the role of aerosols in SARS-CoV-2 coronavirus transmission is discussed from the biophysical perspective. The essential properties of the coronavirus virus transported inside aerosol droplets, their successive inhalation, and size-dependent deposition in the respiratory system are highlighted. The importance of face covers (respirators and masks) in the reduction of aerosol spreading is analyzed. Finally, the discussion of the physicochemical phenomena of the coronavirus entering the surface of lung liquids (bronchial mucus and pulmonary surfactant) is presented with a focus on a possible role of interfacial phenomena in pulmonary alveoli. Information given in this review should be important in understanding the essential biophysical conditions of COVID-19 infection via aerosol route as a prerequisite for effective strategies of respiratory tract protection, and possibly, indications for future treatments of the disease.  相似文献   

18.
Mass pathogen screening is critical to preventing the outbreaks and spread of infectious diseases. The large-scale epidemic of COVID-19 and the rapid mutation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus have put forward new requirements for virus detection and identification techniques. Here, we report a CRISPR-based Amplification-free Viral RNA Electrical Detection platform (CAVRED) for the rapid detection and identification of SARS-CoV-2 variants. A series of CRISPR RNA assays were designed to amplify the CRISPR-Cas system‘s ability to discriminate between mutant and wild RNA genomes with a single-nucleotide difference. The identified viral RNA information was converted into readable electrical signals through field-effect transistor biosensors for the achievement of highly sensitive detection of single-base mutations. CAVRED can detect the SARS-CoV-2 virus genome as low as 1 cp μL−1 within 20 mins without amplification, and this value is comparable to the detection limit of real-time quantitative polymerase chain reaction. Based on the excellent RNA mutation detection ability, an 8-in-1 CAVRED array was constructed and realized the rapid identification of 40 simulated throat swab samples of SARS-CoV-2 variants with a 95.0 % accuracy. The advantages of accuracy, sensitivity, and fast speed of CAVRED promise its application in rapid and large-scale epidemic screening.  相似文献   

19.
Approximately every 100 years, as witnessed in the last two centuries, we are facing an influenza pandemic, necessitating the need to combat a novel virus strain. As a result of the new coronavirus (severe acute respiratory syndrome coronavirus type 2 [SARS-CoV-2] outbreak in January 2020, many clinical studies are being carried out with the aim of combating or eradicating the disease altogether. However, so far, developing coronavirus disease 2019 (COVID-19) detection kits or vaccines has remained elusive. In this regard, the development of antiviral nanomaterials by surface engineering with enhanced specificity might prove valuable to combat this novel virus. Quantum dots (QDs) are multifaceted agents with the ability to fight against/inhibit the activity of COVID-19 virus. This article exclusively discusses the potential role of QDs as biosensors and antiviral agents for attenuation of viral infection.  相似文献   

20.
In this ongoing theme of coronavirus disease 2019 (COVID-19) pandemic, highly sensitive analytical testing platforms are extremely necessary to detect SARS-CoV-2 RNA and antiviral antibodies. To limit the viral spread, prompt and precise diagnosis is crucial to facilitate treatment and ensure effective isolation. Accurate detection of antibodies (IgG and IgM) is imperative to understand the prevalence of SARS-CoV-2 in public and to inspect the proportion of immune individuals. In this review, we demonstrate and evaluate some tests that have been used commonly to detect SARS-CoV-2. These include nucleic acid and serological tests for the detection of SARS-CoV-2 RNA and specific antibodies in infected people. Moreover, the vitality of biosensing technologies emphasizing on optical and electrochemical biosensors toward the detection of SARS-CoV-2 has also been discussed here. The early diagnosis of COVID-19 based on detection of reactive oxygen species overproduction because of virus-induced dysfunctioning of lung cells has also been highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号