首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A surface micromachining process is presented which has been used to fabricate electrostatic microactuators. These microactuators are interconnected with each other and linked to other movable microstructures by integrated gear linkages. The gear linkages consist of rotational and linear gear structures, and the electrostatic microactuators include curved electrode actuators, comb-drive actuators, and axial-gap wobble motors. The micromechanical structures are constructed from polysilicon. Silicon dioxide was used as a sacrificial layer, and silicon nitride was used for electrical insulation. A cyclohexane freeze drying technique was used to prevent problems with stiction. The actuators, loaded with various mechanisms, were successfully driven by electrostatic actuation. The work is a first step toward mechanical power transmission in micromechanical systems  相似文献   

2.
Three innovative micro actuator concepts on the basis of the differential SMA principle are presented in this paper: a high adaptive multi-actuator system, which is driven by numerous identical single actuators connected in parallel and in series, a micro gripper for handling and assembling of complex hybrid micro systems and a micro actuator system in medical tools for the percutaneous resection of aortic valves. The SMA material is used in the form of 50 μm thin NiTi foils because of their well-defined properties and high strength. In order to integrate them into micro systems, different manufacturing methods have been applied and improved at the Institute for Microtechnology. Laser cutting and wet chemical etching are used for example to microstructure the actuator elements. Different methods for electrical and mechanical connections of the actuators are employed like soldering by the use of an additional gold layer. A batch fabrication process of SMA actuators is realized by embedding NiTi foil elements into SU-8 structures. To optimize the design of SMA actuator elements according to its application different simulation procedures are used.  相似文献   

3.
Fabricating electrostatic micro actuator, such as comb-drive actuator, is one of the demanding areas of the MEMS technology because of the promising applications in modern engineering, such as, micro-switches, attenuators, filters, micro-lenses, optical waveguide couplers, modulation, interferometer, dynamic focus mirror, and chopper. For the fabrication, most of the cases silicon monocrystalline wafers are used through complex process. To etch the silicon substrates, researchers often use deep reactive-ion etching or anisotropic wet etching procedure which are time consuming and unsuitable for batch fabrication process. Again, resent research shows that comb-drive actuators need comparatively high voltage for actuation. In solving these problems, the study presents a copper based electrostatic micro actuator with low actuation voltage. Using wire electrical discharge machine (WEDM), the actuator is fabricated where a light weight flexible spring model is introduced. Capacitor design model is applied to present a voltage controlling electronic circuit using Arduino micro controller unit. The experimental result shows that the actuator is able to produce 1.38 mN force for 15 V DC. The experiment also proves that coper based actuator design using WEDM technology is much easier for batch processing and could provide the advantages in rapid prototyping.  相似文献   

4.
The fabrication of aluminum spatial light modulators has so far required costly process engineering efforts. In this paper, a low-cost process approach is presented, suitable for the manufacture of electrostatic micromirror arrays. The mirrors are made from the second metallization of complementary metal oxide semiconductor (CMOS) or bipolar processes deposited in two passes. This metal2 is protected by a photoresist layer that can be patterned using the top passivation mask of the process. No additional layer deposition and layer structuring is necessary during postprocessing. The actuators are released in a simple surface micromachining postprocessing sequence based on a sacrificial aluminum and silicon dioxide etch. Our approach allows one metallization to be used for both the circuitry and the electrooptomechanicaI devices. Deformable mirror arrays of up to 16×16 pixels were fabricated. Static self-consistent electromechanical simulations using the finite-element method (FEM) toolbox SOLIDIS were performed for a theoretical analysis and optimization of the actuator devices  相似文献   

5.
Microelectromechanical systems (MEMS)-based near-field scanning optical microscopy (NSOM) probes with a bow-tie antenna structure consisting of two metal triangular electrodes separated by a narrow gap have been designed and fabricated. An electrostatic actuator is integrated on this bow-tie probe to decrease the gap width for enhancing the optical near-field intensity. A self-alignment process based on deep reactive ion etching and wet anisotropic etching is established to fabricate the symmetric bow-tie structure. The static and dynamic actuations of electrostatic actuators are examined. With the mechanical resonance of the antenna structure to lateral direction, NSOM imaging is performed in the visible range, and the subwavelength resolution beyond the diffraction limit of light is demonstrated.1655  相似文献   

6.
Deep reactive ion etching (DRIE) process is specially invented for bulk micromachining fabrication with the objective of realizing high aspect ratio microstructures. However, various tolerances, such as slanted etched profile, uneven deep beams and undercut, cannot be avoided during the fabrication process. In this paper, the origins of various fabrication tolerances together with its effects on the performances of lateral comb-drive actuator, in terms of electrostatic force, mechanical stiffness, stability and displacement, are discussed. It shows that comb finger with positive slope generates larger electrostatic force. The mechanical stiffness along lateral direction increases when the folded beam slants negatively. The displacement is 4.832 times larger if the comb finger and folded beam are tapered to +1° and −1°, respectively. The uneven deep fingers generate an abrupt force and displacement when the motion distance reaches the initial overlap length. The undercut reduces both the driving force and the mechanical stiffness of the lateral comb-drive actuator. The fabricated comb-drive actuator, with comb finger of +1° profile and 0.025 μm undercut, and folded beam of −1° slope and 0.075 μm undercut, is measured and compared with the models where both show consistent results. These analytical results can be used to compensate the fabrication tolerances at design stage and allow the actuators to provide more predictable performance.  相似文献   

7.
In modeling micromachined deformable mirrors with electrostatic actuators whose gap spacings are of the same order of magnitude as those of the surface deformations, it is necessary to use nonlinear models for the actuators. In this paper, we consider micromachined deformable mirrors modeled by a membrane or plate equation with nonlinear electrostatic actuator characteristics. Numerical methods for computing the mirror deformation due to given actuator voltages and the actuator voltages required for producing the desired deformations at the actuator locations are presented. The application of the proposed methods to circular deformable mirrors whose surfaces are modeled by elastic membranes is discussed in detail. Numerical results are obtained for a typical circular micromachined mirror with electrostatic actuators  相似文献   

8.
We present design and experimental implementation of electrostatic comb-drive actuators in solutions of high conductivity relevant for biological cells. The actuators are operated in the frequency range 1-10 MHz in ionic and biological cell culture media, with ionic strengths up to 150 mmol/L. Typical displacement is 3.5 mum at an applied peak-to-peak signal of 5 V. Two different actuation schemes are presented and tested for performance at high frequency. A differential drive design is demonstrated to overcome the attenuation due to losses in parasitic impedances. The frequency dependence of the electrostatic force has been characterized in media of different ionic strengths. Circuit models for the electric double layer phenomena are used to understand and predict the actuator behavior. The actuator is integrated into a planar force sensing system to measure the stiffness of cells cultured on suspended structures.  相似文献   

9.
The large majority of microelectromechanical systems (MEMS) are fabricated on silicon, glass or Pyrex substrates by manufacturing techniques, which originated from the semiconductors industry. However, their final application often requires removal of the fabrication substrate or at least a partial release of some section of the device. This paper describes a technique based on anodic dissolution of sacrificial metal layers for the complete or partial detachment of microstructures. As an example, a thin-film of sacrificial aluminum is selectively removed in a neutral sodium chloride solution by applying a small positive potential to the aluminum. The method is evaluated theoretically and experimentally in a defined geometry and compared to diffusion-limited, chemical etching. It is shown experimentally that the process is significantly faster than conventional wet chemical etching and the method has been used to release planar and nonplanar thin-film devices made from polymers and metals. The method is applicable for a wide range of metals as sacrificial materials and is very versatile with respect to electrolyte composition and applied voltages. Ease of sacrificial material deposition (sputtering or evaporation) and structuring and the possibility of high process temperature and the nondestructive chemical environment (also environmentally friendly) during detachment make the process technology an interesting alternative to conventional chemical etching.  相似文献   

10.
This paper presents the design and fabrication of a silicon micro gearing system (MGS) that utilizes electrostatic comb-drive actuators to rotate a gear ring through a ratchet mechanism. The rotational comb-drive actuator is engaged with the gear ring through a spring system and ratchet teeth at one end, reciprocally rotates around an elastic point at the other end based on the electrostatic force. Rotational motion and torque from the driving gear ring are transmitted smoothly to driven gears through involute-shaped gear teeth. Smart design of anti-gap structures helps to overcome the unavoidable gap problem occurred in deep reactive ion etching (deep-RIE) process of silicon. The MGS has been fabricated and tested successfully by using SOI (silicon-on-insulator) wafer and one mask only. The angular velocity of the gear ring is proportional to the driving frequency up to 40 Hz.  相似文献   

11.
 We demonstrate an electrostatic micro actuator which is fabricated by LIGA process. The actuator is designed for a magnetic head tracking system of hard disk drives (HDDs). The actuator is essential to achieve very high track density of HDDs. We realize the aspect ratio of 125 by the LIGA process using a Si-Au mask. We propose to use PMMA molds both as the mechanical structure and as the insulator between electrodes. We believe there are great opportunity for the LIGA process in making micro actuators of HDDs. Received: 25 August 1997 / Accepted: 24 October 1997  相似文献   

12.
A release technique that enables to lift microfabricated structures mechanically off the surface without using wet chemistry is presented. A self-assembled monolayer of dodecyl-trichlorosilane forms a very uniform ~1.5-nm-thick anti-adhesion coating on the silicon dioxide surface, on full wafer scale. The structural layers are formed directly onto the organic layer. They consist here of a 100-nm-thick aluminum film and a high-aspect ratio photoplastic SU-8 structure. After the microfabrication the structure can be lifted off the surface together with the aluminum layer. This generic technique was used to make a variety of novel structures. First, aluminum electrodes that are embedded in plastic are made using lithography, etching and surface transfer techniques. Second, using a patterned monolayer as defined by microcontact printing, resulted in a spatial variation of the surface adhesion forces. This was used to directly transfer the stamped pattern into a metal structure without using additional transfer etching steps. Third, the monolayer's ability to cover surface features down to nanometer scale was exploited to replicate sharp surface molds into metal coated photoplastic tips with ~30-nm radii for use in scanning probe instruments such as near-field optical techniques. The advantage compared to standard sacrificial layer techniques is the ability of replication at the nanoscale and the absence of etchants or solvents in the final process steps  相似文献   

13.
The development of an electrostatic microactuator system for the study and control of high-speed jet flows is presented. The electrostatic actuator is 1.3 mm wide, 14 μm thick and has a head that overhangs a glass substrate, intruding into the flow by 200 μm. The actuator has been fabricated using a bulk-silicon dissolved-wafer process to increase device thickness for increased stiffness in the flow direction. Characterization of the new actuators demonstrated their ability to oscillate with amplitudes of up to 70 μm peak-to-peak at resonant frequencies of 5 and 14 kHz. This is a very large motion at such high frequencies when compared to existing macro or micro mechanical actuators. The full actuator system was mounted around the exit of a high-speed jet using several sector-shaped PC boards. This enabled detailed examination of the ability of the actuators to withstand the flow environment and generate substantial flow disturbances. The results showed that the microactuators functioned properly up to jet speeds of 300 m/s while generating disturbances in the shear layer surrounding the jet comparable to those produced by other macro-scale methodologies  相似文献   

14.
Angular electrostatic microactuators suitable for use in a two-stage servo system for magnetic disk drives have been fabricated from molded chemical-vapor-deposited (CVD) polysilicon using the HexSil process. A 2.6-mm-diameter device has been shown to be capable of positioning the read/write elements of a 30% picoslider over a ±1-μm range, with a predicted bandwidth of 2 kHz. The structures are formed by depositing polysilicon via CVD into deep trenches etched into a silicon mold wafer. Upon release, the actuators are assembled onto a target wafer using a solder bond. The solder-bonding process will provide easy integration of mechanical structures with integrated circuits, allowing separate optimization of the circuit and structure fabrication processes. An advantage of HexSil is that once the mold wafer has undergone the initial plasma etching, it may be reused for subsequent polysilicon depositions, amortizing the cost of the deep-trench etching over many structural runs and thereby significantly reducing the cost of finished actuators. Furthermore, 100-μm-high structures may be made from a 3-μm deposition of polysilicon, increasing overall fabrication speed  相似文献   

15.
Sacrificial etching is one of the most important process steps in micro-electro-mechanical systems technology, since it enables the generation of free-standing structures. These structures are often the main part of micro-mechanical devices, intended to sense or induce a mechanical movement. The etching process transforms an initial multi-segmented geometry and depends on material properties and several process conditions. One of the crucial issues for etching is the etching selectivity on different materials. The major task for the simulation is to give an answer, how sacrificial layer surfaces regress in time under the influence of process parameters and to which magnitude surrounding material segments are affected by the etching process. For this purpose we have developed a fully three-dimensional topography simulation tool, Etcher-Topo3D, which is capable to deal with realistic process conditions. The main concept is demonstrated in this work. During simulation the topography of the initial multi-segment geometry is changed which is handled by a level-set algorithm. After a simulation is finished, the level-set representation has usually to be converted back to a mesh representation to enable further analysis. To illustrate the main features of our simulation tool several examples of MEMS structures with a sacrificial layer are presented.  相似文献   

16.
This paper presents a generalized model that describes the behavior of micromachined electrostatic actuators in conducting liquids and provides a guideline for designing electrostatic actuators to operate in aqueous electrolytes such as biological media. The model predicts static actuator displacement as a function of device parameters and applied frequency and potential for the typical case of negligible double-layer impedance and dynamic response. Model results are compared to the experimentally measured displacement of electrostatic comb-drive and parallel-plate actuators and exhibit good qualitative agreement with experimental observations. The model is applied to show that the pull-in instability of a parallel-plate actuator is frequency dependent near the critical frequency for actuation and can be eliminated for any actuator design by tuning the applied frequency. In addition, the model is applied to establish a frequency-dependent theoretical upper bound on the voltage that can be applied across passivated electrodes without electrolysis.  相似文献   

17.
 Fibre-optical micro-electro-mechanical systems (MEMS) switches for optical communication systems require high-precision mechanical subassemblies due to the sensitivity of single-mode fibre coupling against misalignments. The fibre diameter of 125 μm also demands for actuators with at least ±62.5-μm travel range. Bulk micromachining based on wet anisotropic etching of crystalline silicon allows fabricating actuators and alignment structures with the required accuracy. Two concepts for lensless moving-fibre switches with thermo-mechanical and electrostatic Si-micromachined actuators with large displacements are demonstrated. Received: 14 January 2002/Accepted: 1 February 2002 This paper was presented at the Workshop “Optical MEMS and Integrated Optics” in June 2001.  相似文献   

18.
Novel PZT thin film actuators for optical applications were proposed. Key issues for realizing the actuators such as PZT thin film processes, mechanical properties evaluation of thin films, and design for laminated structure were described. [1 1 1]-oriented PZT films were obtained by anneal/non-anneal sputtering process. Also for PZT dry etching, it was made clear low pressure and low temperature conditions were advantageous for high selectivity and etch rate. ECR etcher was used and etch rate of 1000 A/min and selectivity of 0.56 to photoresist mask were obtained. Young’s modulus and built-in stress of PZT film, measured by load-deflection method, were 72 GPa, −335 MPa respectively. Using these results, calculated deflection of each actuator was on the order of a few microns to 20 microns. It was confirmed that deflection of actuators would be enough for the application.  相似文献   

19.
This paper presents a generalized model for the pull-in phenomenon in electrostatic actuators with a single input, either charge or voltage. The pull-in phenomenon of a general electrostatic actuator with a single input is represented by an algebraic equation referred to as the pull-in equation. This equation directly yields the pull-in parameters, namely, the pull-in voltage or pull-in charge and the pull-in displacement. The model presented here permits the analysis of a wide range of cases, including nonlinear mechanical effects as well as various nonlinear, nonideal, and parasitic electrical effects. In some of the cases, an analytic solution is derived, which provides physical insight into how the pull-in parameters depend upon the design and properties of the actuator. The pull-in equation can also yield rapid numerical solutions, allowing interactive and optimal design. The model is then utilized to analyze analytically the case of a Duffing spring, previously analyzed numerically by Hung and Senturia, and captures the variations of the pull-in parameters in the continuum between a perfectly linear spring and a cubic spring. Several other case studies are described and analyzed using the pull-in equation, including parallel-plate and tilted-plate (torsion) actuators taking into account the fringing field capacitance, feedback and parasitic capacitance, trapped charges, an external force, and large displacements  相似文献   

20.
Fabrication of submicron high-aspect-ratio GaAs actuators   总被引:2,自引:0,他引:2  
Submicron, single-crystal gallium arsenide (SC-GaAs) actuators have been designed, fabricated, and operated. The fabrication process, called SCREAM-II (single crystal reactive etching and metallization II), uses chemically assisted ion beam etching (CAIBE) and reactive ion etching (RIE) to produce suspended and movable SC-GaAs structures with up to a 25:1 aspect ratio of vertical depth (10 μm) to lateral width (400 nm). Integrated actuators with predominantly vertical sidewall (PVS) aluminum electrodes are used to move the structures. Silicon nitride is used as an etch mask, structural stiffener, and electrical insulator. An x-y stage with integrated actuators produces controllable x-y displacements of ±1.8 μm when a voltage of 54.5 V is applied to either or both of the x and y actuators. The x-y stage resonates for an applied sinewave of 20 V (peak to peak) with f=10.5 kHz and a DC offset of 10 V. The structural vibration amplitude is 0.6 μm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号