首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two commercial polyethylene samples, linear high‐density polyethylene (HDPE) and branched linear low‐density polyethylene with almost the same molecular weight distribution but different contents of short‐chain branching (SCB) were melt blended based on the consideration of practical application. Dynamic rheology analysis indicated good compatibility of all the blends with different compositions. Common differential scanning calorimeter (DSC) tests and successive self‐nucleation and annealing (SSA) treatment showed several interesting phenomena. First, without consideration of the effect of molecular weight and molecular weight distribution impact, co‐crystallization occurred at all ratios even the two components had a considerable difference in SCB distribution. Second, in SSA curves the area of the first two melting peaks, i.e., the amount of the thick lamellas of the two components showed an obvious positive deviation with the increase of HDPE content owing to the crystal perfection improved by the co‐crystallization. Essential Work of Fracture tests proved the co‐crystallization effects had a positive effect on the improvement of the resistance to crack propagation. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
The crystallization behavior of neat PPS and PPS in blends with PMR‐POI prepared by melt mixing were investigated by differential scanning calorimetry (DSC). It was found that POI was an effective nucleation agent of the crystallization for PPS. The enthalpy of crystallization of PPS in the blends increased compared with that of neat PPS. During isothermal crystallization from melt, the dependence of relative degree of crystallinity on time was described by the Avrami equation. It has been shown that the addition of POI causes an increase in the overall crystallization rate of PPS; it also changed the mechanism of nucleation of the PHB crystals from homogeneous nucleation to heterogeneous nucleation. The equilibrium melting temperature of PPS and PPS/POI blends were determined. The analysis of kinetic data according to nucleation theories shows that the increase in crystallization rate of PPS in the composite is due to the decrease in surface energy of the extremity surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 436–442, 2002  相似文献   

3.
Thermal analyses of microparts in high density polyethylene (HDPE) have shown that the specific processing conditions used in microinjection molding have irreversible consequences on the polymer morphology. This result has been demonstrated with the analysis of the non‐isothermal crystallization behavior of a HDPE with different thermal histories. The evolution of the absolute crystallinity has been analyzed with a relevant model able to separate the primary and secondary mechanisms all over the crystallization duration. This model has emphasized that the evolution of the primary crystallinity with time is different for the microparts compared to the conventional objects. These differences were attributed to variations of the crystallization mechanisms, especially within the nucleation phase, where a persistent melt memory effect of the former chains orientation/extension was assumed. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44239.  相似文献   

4.
The effect of polystyrene (PS) on the kinetics of the cold crystallization of poly(ethylene terephthalate) (PET) was thoroughly investigated. The PET/PS blends were essentially immiscible, as observed by dynamic mechanical thermal analysis, which showed two distinct glass‐transition temperatures, and by scanning electron microscopy. The neat PET and its blends were isothermally cold‐crystallized at various temperatures, and the kinetic parameters were determined with the Avrami approach. PET and its blends presented values of the Avrami exponent close to 2, and the kinetic constant increased with the crystallization temperature increasing. For all the crystallization temperatures studied, the presence of only 1 wt % PS significantly reduced the rate of cold crystallization of PET. A further increase in the PS concentration did not show any significant influence. The blends presented higher values of the activation energy for cold crystallization, which was estimated from Arrhenius plots. The equilibrium melting temperature of neat PET was determined on the basis of the linear Hoffman–Weeks extrapolative method to be ~ 255°C. This value decreased in the presence of PS, and this suggested limited solubility between PET and PS. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter was obtained, and it was shown to be higher for the neat PET than for the blends. Moreover, a transition of regimes (I → II) was observed in both PET and its blends. From the investigations conducted here, it is clear that PS in small amounts causes a reduction in the rate of PET crystallization, acting as an antinucleating agent. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
The objective of this study is to investigate the effect of low density polyethylene (LDPE) content in linear low density polyethylene (LLDPE) on the crystallinity and strain hardening of LDPE / LLDPE blends. Three different linear low density polyethylenes (LL‐1, LL‐2 and LL‐3) and low density polyethylenes (LD‐1, LD‐2 and LD‐3) were investigated. Eight blends of LL‐1 with 10, 20, 30 and 70 wt % of LD‐1 and LD‐3, respectively, were prepared using a single screw extruder. The elongational behavior of the blends and their constituents were measured at 150°C using an RME rheometer. For the blends of LL‐1 with LD‐1, the low shear rate viscosity indicated a synergistic effect over the whole range of concentrations, whereas for the blends of LL‐1 with LD‐3, a different behavior was observed. For the elongational viscosity behavior, no significant differences were observed for the strain hardening of the 10–30% LDPE blends. Thermal analysis indicated that at concentrations up to 20%, LDPE does not significantly affect the melting and crystallization temperatures of LLDPE blends. In conclusion, the crystallinity and rheological results indicate that 10–20% LDPE is sufficient to provide improved strain hardening in LLDPE. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3070–3077, 2003  相似文献   

6.
The influence of the hydrogenated petroleum resin P125 on the crystallization behavior, crystallization kinetics, and optical properties of polypropylene (PP) were investigated. The results of differential scanning calorimetry, successive self‐nucleation, and annealing fractionation demonstrated that P125 reduced the interaction between the PP molecules, decreased the crystallization, prevented PP from forming thick lamellae, and encouraged the formation of thin lamellae. The isothermal crystallization kinetics, self‐nucleation isothermal crystallization kinetics, and polarized optical microscopy observations showed that P125 slightly decreased the nucleation rate, significantly decreased the crystal growth rate, generally reduced the overall crystallization rate, and effectively deceased the crystallite sizes of PP. The optical properties studies showed that P125 effectively decreased the haze and increased the surface glossiness and yellowness index of PP. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
The rheological properties of blends consisting of a long chain branched low‐density polyethylene (LDPE) and two linear low‐density polyethylenes (LLDPE) are studied in detail. The weight fractions of the LDPE used in the blends are 5 and 15%. The linear viscoelastic characterization is performed at different temperatures for all the blends to check thermorheological behavior and miscibility in the melt state. Blends containing metallocene LLDPE as the matrix display thermorheologically complex behavior and show evidences of immiscibility in the melt state. The linear viscoelastic response exhibits the typical additional relaxation ascribed to the form deformation mechanism of dispersed phase droplets (LDPE). The Palierne model satisfactorily describes the behavior of these blends in the whole frequency range explored. However, those blends with Ziegler‐Natta LLDPE as the matrix fulfill the time‐temperature superposition, but exhibit a broad linear viscoelastic response, further than the expected for an immiscible system with a sharp interface. The rheological analysis reveals that, in addition to the droplets form relaxation, another mechanism at lower frequencies exists. The broad linear response of the blends with the Ziegler‐Natta LLDPE can be explained by hypothesizing a strong interaction between the high molecular weight linear fraction of the LLDPE and the low molecular weight (almost linear) chains of the LDPE phase, forming a thick interface with its own viscoelastic properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
This review paper deals with the overall crystallization behavior of polyethylene/wax blends as phase change materials (PCMs) for thermal energy storage with the determination of their thermal properties. The addition of molten wax to the polyethylenes decreases the crystallization and melting temperatures of the blends. However, incorporating fillers to the polyethylene/wax blends can either decrease or increase the crystallization and melting temperatures of the composites depending on the filler type. The normalized enthalpy values of linear low-density polyethylene showed no significant change when increasing the wax content. On the contrary, the normalized enthalpy values of the wax in the blends were lesser than that of pure wax and increased with increasing wax content. Since the wax in the blend had a lower crystallinity compared to pure wax, this influences its effectiveness as a PCM for thermal energy storage. The effect of different polyethylenes on the wax morphology gave rise to enhance phase separation when wax was blended to high-density polyethylene as compared to the other polyethylenes. On the contrary, the effect of various waxes on the morphology of polyethylene resulted in different morphologies due to the molecular weight of the wax used and the structure of the polyethylene chain. The addition of fillers to the polyethylene (PE)/wax samples resulted in enhanced phase separation. The overall isothermal crystallization rate and the equilibrium melting temperature of PEs in the PEs/wax blends were depressed by wax addition due to the wax dilution effect.  相似文献   

9.
Moderate cross‐linked blend (LLDPE‐PP) of linear low‐density polyethylene (LLDPE) and polypropylene (PP) with benzoyl peroxide (BPO) were prepared by the reactive melt mixing in HAAKE mixer. Effect of LLDPE‐PP as compatibilizer on the morphology, crystallization behavior and mechanical properties of LLDPE/PP (87/13) blends were studied using scanning electron microscopy (SEM), polarized optical microscopy (POM), wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC) and mechanical testing machines. The results showed that LLDPE‐PP not only improved the interfacial adhesion between the LLDPE and PP but also acted as selective nucleating agent for crystal modification of PP. In the blends, the sizes of LLDPE and PP spherulites became smaller, and their melting enthalpies reduced in the presence of LLDPE‐PP. Furthermore, the mechanical properties of LLDPE/PP blends were improved with the addition of LLDPE‐PP, and when the concentration of LLDPE‐PP was 2 phr, the ternary blend had the best mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Quiescent melt crystallization rates of various polyolefins including high density polyethylene (PE), isotactic form of polypropylene (PP), polybutene‐1 (PB1), and poly(4‐methyl pentene‐1) (P4MP1) were investigated under both isothermal and nonisothermal conditions using differential scanning calorimetry (DSC). The order of overall crystallization rates under quiescent conditions from fast to slow was found to be: PE, P4MP1, PP and PB1. The Avrami equation was used to analyze isothermal and nonisothermal crystallization processes, respectively. In order to compare relative crystallization rates of these polymers, continuous cooling transformation curves for each polymer under nonisothermal condition as well as the plot of crystallization half‐time as a function of crystallization temperature under isothermal conditions were constructed. Comparisons were made of the relative rate of crystallization of the different isotactic polyolefins with each other and with reports in the literature. Isotactic polyolefins with linear side groups crystallize increasingly more slowly as the side group lengthens with polypentene‐1 (PPT1) and polyhexene‐1 (PH1) crystallizing even more slowly than PB1. It is notable that P4MP1, which has isobutyl as a bulky side group, and apparently poly(3‐methyl butene‐1) (P3MB1) showed fairly high crystallization rates. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
Melting behavior and crystallization kinetics of easy processing polyethylene (EPPE) and the blends of EPPE/mLLDPE were studied using differential scanning calorimetry at various crystallization temperature and cooling rates. The Avrami analysis was employed to describe the isothermal and nonisothermal crystallization process of pure polymers and their blends, and a method developed by Mo was applied for comparison. Kinetic parameters such as the Avrami exponent (n), the kinetic crystallization rate constant (k and kc), the peak temperatures (Tp), and the half-time of crystallization (t1/2), etc. were determined. The appearance of double melting peaks and the double crystallization peaks of the polymers showed that the main chain and the branches crystallize seperately, but the main chains of two polymers can crystallize together and mLLDPE act as nuclei while EPPE crystallizes. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
This article investigates the effect of modifying the polypropylene (iPP) α‐phase nucleating agent 1,3:2,4‐bis(3,4‐dimethylbenzylidene) sorbitol (DMDBS) with tetrasilanolphenyl silsesquioxane (phPOSS). It has been proven that an increasing amount of silsesquioxane leads to differences in the crystallization behavior. What is more, it has been observed that the nucleation effect that results from the addition of sorbitol derivatives is suppressed by phPOSS activity. To understand the influence of phPOSS addition on the crystallization kinetics of PP/DMDBS/phPOSS composites that have been prepared by melt processing in a twin screw extruder, differential scanning calorimetry, rotational rheometry and Fourier transform infrared spectroscopy are performed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40131.  相似文献   

13.
In this article, the spherulitic growth rate of neat and plasticized poly(lactic acid) (PLA) with triphenyl phosphate (TPP) was measured and analyzed in the temperature range of 104–142°C by polarizing optical microscopy. Neat PLA had the maximum value of 0.28 μm/s at 132°C, whereas plasticized PLA had higher value than that of neat PLA, but the temperature corresponding to the maximum value was shifted toward lower one with increasing TPP content. The isothermal crystallization kinetics of neat and plasticized PLA was also analyzed by differential scanning calorimetry and described by the Avrami equation. The results showed for neat PLA and its blends with various TPP contents, the average value of Avrami exponents n were close to around 2.5 at two crystallization temperatures of 113 and 128°C, the crystallization rate constant k was decreased, and the half‐life crystallization time t1/2 was increased with TPP content. For neat PLA and its blend with 15 wt % TPP content, the average value of n was 2.0 and 2.3, respectively, the value of k was decreased, and the value of t1/2 was increased with crystallization temperature (Tc). Further investigation into crystallization activation energy ΔEa of neat PLA and its blend with 15 wt % TPP showed that ΔEa of plasticized PLA was increased compared to neat PLA. It was verified by wide‐angle X‐ray diffraction that neat PLA and its blends containing various TPP contents crystallized isothermally in the temperature range of 113–128°C all form the α‐form crystal. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Polylactide (PLA)/linear low‐density polyethylene (LLDPE), (PLA/LLDPE), blends and nanocomposites were prepared by melt mixing process with a view to fine tune the properties. Two different commercial‐grade nanoclays, Cloisite® 30B (30B) and Cloisite® 15A (15A) were used. A terpolymer of ethylene, butylacrylate (BA) and glycidylmethacrylate (GMA) was used as a reactive compatibilizer. The influence of type of clay on the morphology and mechanical properties of two PLA‐rich and LLDPE‐rich blend systems was studied. Morphological analysis using X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy revealed that the organoclay layers were dispersed largely at the interface of PLA/LLDPE. Decreasing the PLA content changed the morphology from droplet‐in matrix to coarse co‐continuous. In comparison with 30B, due to less affinity of 15A towards compatibilizer and PLA phase, the reduction of the size of dispersed phase was less than that of the equivalent 30B composites. The mechanical results demonstrated that the composites containing both types of organoclay exhibited higher modulus but lower elongation and tensile strength as compared to the neat blends. The injection molded nanocomposites were shown to have the sequential fracture behavior during tensile test. The tensile testing results on the neat blends and nanocomposites showed significant increase in elongation at break and decrease in the modulus as compared with the neat PLA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 749‐758, 2013  相似文献   

15.
Polypropylene (PP)/metallocene‐catalyzed polyethylene elastomer (mPE) blends were prepared in a twin‐screw extruder. The melting behavior, crystallization behavior, and isothermal crystallization kinetics of the blends were studied with differential scanning calorimetry. The results showed that PP and mPE were partially miscible and that the addition of mPE shifted the melting peak of PP to a lower temperature but the crystallization temperature to a higher temperature, demonstrating a dilution effect of mPE on PP. The isothermal crystallization kinetics of the blends were described with the Avrami equation. The values of the Avrami exponent indicated that the nucleation mechanism of the blends was heterogeneous, the growth of spherulites was almost three‐dimensional, and the crystallization mechanism of PP was not affected much by mPE. At the same time, the Avrami exponents of the blends were higher than that of pure PP, and this showed that the addition of mPE helped PP to form more perfect spherulites. The crystallization rate of PP was increased by mPE because the dilution effect of mPE on PP increased the mobility of PP chains. The crystallization activation energy was estimated with the Arrhenius equation, and the nucleation constant was determined by the Hoffman–Lauritzen theory. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Detailed characterization of the crystallization behavior is important for obtaining better structure property correlations of the isotactic polypropylene (iPP), however, attributed to the complexity in ZN‐iPP polymerization, the relationship between crystallization behavior and the stereo‐defect distribution of iPP is still under debate. In this study, the crystallization kinetics of the primary nucleation, crystal growth and overall crystallization of two iPP samples (PP‐A and PP‐B) with nearly same average isotacticity but different stereo‐defect distribution (the stereo‐defect distribution of PP‐B is more uniform than PP‐A) were investigated. The results of isothermal crystallization kinetics showed that the overall crystallization rate of PP‐A was much higher than that of PP‐B; but the analysis of self‐nucleation isothermal crystallization kinetics and the polarized optical microscopy (POM) observation indicated that the high overall crystallization rate of PP‐A was attributed to the high primary nucleation rate of the resin. The stereo‐defect distribution plays an important role in determining both the nucleation kinetics and crystal grow kinetics, and thus influence the overall crystallization kinetics. A more uniform distribution of stereo‐defects restrains the crystallization rate of iPP, moreover, it has more influence on nucleation kinetics, comparing with the crystal growth. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
用DSC法对三氧化二锑 (Sb2 O3)、氟钛酸钾 (K2 TiF6 )、钛酸四丁酯 (Ti(OC4 H9) 4)及乙二醇锑(S -2 4) 4种催化体系所得聚酯进行等温结晶研究 ,求得了结晶速率常数 (k)和Avrami指数 (n)。结果表明 ,锑系催化剂所得聚酯的结晶速度总体大于钛系催化剂所得聚酯 ,其中以Sb2 O3催化所得聚酯结晶速度最快 ,而Ti(OC4 H9) 4催化所得聚酯结晶速度最慢。DTA结果表明锑系催化剂所得聚酯冷结晶温度低于钛系催化剂所得聚酯 ,与结晶速度测试结果相一致。  相似文献   

18.
The isothermal and nonisothermal crystallization behavior of high density polyethylene (HDPE) containing various zero, one, and two dimensional (0‐D, 1‐D, and 2‐D) carbon nanofillers were investigated by means of differential scanning calorimetry. For a given temperature, the isothermal crystallization incubation time of HDPE became longer with the addition of lower dimensional carbon nanofillers, and the isothermal crystallization rate got slower. The values of Avrami and Tobin exponents indicated that the isothermal crystallization of HDPE followed two‐dimensional crystal growth in the presence of 2‐D and 1‐D carbon nanofillers, while exhibited three‐dimensional heterogeneous crystal growth in the presence of 0‐D carbon nanofillers. Contrary to the isothermal study, the nonisothermal crystallization of HDPE was accelerated in the presence of lower dimensional nanofillers. The nonisothermal crystallization data were finally analyzed using Ozawa and Mo methods. It was observed that only Mo approach could successfully describe the nonisothermal crystallization process of HDPE and HDPE/carbon nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
LLDPE/SEBS-g-MAH体系的等温结晶动力学   总被引:1,自引:0,他引:1       下载免费PDF全文
采用差示扫描量热法(DSC)研究了SEBS-g-MAH对LLDPE等温结晶行为的影响,并通过偏光显微镜(POM)观察了LLDPE及LLDPE/SEBS-g-MAH共混体系的结晶形态。结果表明,SEBS-g-MAH的加入阻碍了LLDPE分子链的规则排列,影响了链段在结晶扩散迁移规整排列的速度,使得结晶速率变慢,结晶活化能升高,对LLDPE晶体生长起了抑制作用,晶粒尺寸减小。用Avrami方程进行等温结晶动力学研究表明,LLDPE/SEBS-g-MAH共混体系的半结晶时间t1/2明显增大,Avrami指数n对结晶温度有依赖性,kn值随温度的升高而减小。利用Hoffman理论计算了球晶生长过程中晶核的折叠表面自由能σe为0.136 J.m-2,SEBS-g-MAH的加入使得σe增大了9.6%。  相似文献   

20.
l ‐Isoleucine (l ‐Ile) was identified as an efficient anti‐nucleating agent for isotactic polypropylene (iPP). At 0.08 wt %, l ‐Ile could significantly decrease the peak crystallization temperature (Tcp) of iPP by up to 8 °C at a cooling rate of 20 °C/min. Furthermore, l ‐Ile exhibited both anti‐nucleation and pro‐nucleation abilities; i.e., a low content of l ‐Ile inhibited iPP crystallization, whereas a high content promoted iPP crystallization. The unique crystallization behavior of iPP in the presence of l ‐Ile was investigated by differential scanning calorimetry, polarized optical microscopy (POM), and rheological measurement. According to POM, a low content of l ‐Ile completely dissolved in the iPP melt, whereas a high content of l ‐Ile did not. Therefore, a mechanism by which l ‐Ile inhibits and promotes the nucleation of iPP was proposed. Dissolving l ‐Ile molecules in the iPP melt hindered the homogeneous nucleation of iPP as a “dilution effect”; however, as the content increases, l ‐Ile could not be completely dissolved in molten iPP, and the residual crystals of l ‐Ile thus provided heterogeneous nucleation sites for iPP and further promoted its crystallization. Experimental evidence from rheology and POM supported this mechanism. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45956.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号