首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous research demonstrated that application of high hydrostatic pressure (HHP), particularly at 300 MPa for 15 min, can enhance foaming properties of whey protein concentrate (WPC). The purpose of this research was to determine the practical impact of HHP-treated WPC on the body and texture of lowfat ice cream. Washington State University (WSU)-WPC was produced by ultrafiltration of fresh separated whey received from the WSU creamery. Commercial whey protein concentrate 35 (WPC 35) powder was reconstituted to equivalent total solids as WSU-WPC (8.23%). Three batches of lowfat ice cream mix were produced to contain WSU-WPC without HHP, WSU-WPC with HHP (300 MPa for 15 min), and WPC 35 without HHP. All lowfat ice cream mixes contained 10% WSU-WPC or WPC 35. Overrun and foam stability of ice cream mixes were determined after whipping for 15 min. Ice creams were produced using standard ice cream ingredients and processing. The hardness of ice creams was determined with a TA-XT2 texture analyzer. Sensory evaluation by balanced reference duo-trio test was carried out using 52 vol.nteers. The ice cream mix containing HHP-treated WSU-WPC exhibited the greatest overrun and foam stability, confirming the effect of HHP on foaming properties of whey proteins in a complex system. Ice cream containing HHP-treated WSU-WPC exhibited significantly greater hardness than ice cream produced with untreated WSU-WPC or WPC 35. Panelists were able to distinguish between ice cream containing HHP-treated WSU-WPC and ice cream containing untreated WPC 35. Improvements of overrun and foam stability were observed when HHP-treated whey protein was used at a concentration as low as 10% (wt/wt) in ice cream mix. The impact of HHP on the functional properties of whey proteins was more pronounced than the impact on sensory properties.  相似文献   

2.
Whey protein concentrate (WPC) has many applications in the food industry. Previous research demonstrated that treatment of whey proteins with high hydrostatic pressure (HHP) can enhance solubility and foaming properties of whey proteins. The objective of this study was to use HHP to improve functional properties of fresh WPC, compared with functional properties of reconstituted commercial whey protein concentrate 35 (WPC 35) powder. Fluid whey was ultrafiltered to concentrate proteins and reconstituted to equivalent total solids (8.23%) as reconstituted commercial WPC 35 powder. Solutions of WPC were treated with 300 and 400 MPa (0- and 15-min holding time) and 600 MPa (0-min holding time) pressure. After HHP, the solubility of the WPC was determined at both pH 4.6 and 7.0 using UDY and BioRad protein assay methods. Overrun and foam stability were determined after protein dispersions were whipped for 15 min. The protein solubility was greater at pH 7.0 than at pH 4.6, but there were no significant differences at different HHP treatment conditions. The maintenance of protein solubility after HHP indicates that HHP-treated WPC might be appropriate for applications to food systems. Untreated WPC exhibited the smallest overrun percentage, whereas the largest percentage for overrun and foam stability was obtained for WPC treated at 300 MPa for 15 min. Additionally, HHP-WPC treated at 300 MPa for 15 min acquired larger overrun than commercial WPC 35. The HHP treatment of 300 MPa for 0 min did not improve foam stability of WPC. However, WPC treated at 300 or 400 MPa for 15 min and 600 MPa for 0 min exhibited significantly greater foam stability than commercial WPC 35. The HHP treatment was beneficial to enhance overrun and foam stability of WPC, showing promise for ice cream and whipping cream applications.  相似文献   

3.
The purpose of this study was to examine flavor binding of high hydrostatic pressure (HHP)-treated whey protein concentrate (WPC) in a real food system. Fresh Washington State University (WSU, Pullman) WPC, produced by ultrafiltration of separated Cheddar cheese whey, was treated at 300 MPa for 15 min. Commercial WPC 35 powder was reconstituted to equivalent total solids as WSU WPC (8.23%). Six batches of low-fat ice cream were produced: A) HHP-treated WSU WPC without diacetyl; B) and E) WSU WPC with 2 mg/L of diacetyl added before HHP; C) WSU WPC with 2 mg/L of diacetyl added after HHP; D) untreated WSU WPC with 2 mg/L of diacetyl; and F) untreated commercial WPC 35 with 2 mg/L of diacetyl. The solution of WSU WPC or commercial WPC 35 contributed 10% to the mix formulation. Ice creams were produced by using standard ice cream ingredients and processes. Low-fat ice creams containing HHP-treated WSU WPC and untreated WSU WPC were analyzed using headspace-solid phase microextraction-gas chromatography. Sensory evaluation by balanced reference duo-trio test was carried out using 50 untrained panelists in 2 sessions on 2 different days. The headspace-solid phase microextraction-gas chromatography analysis revealed that ice cream containing HHP-treated WSU WPC had almost 3 times the concentration of diacetyl compared with ice cream containing untreated WSU WPC at d 1 of storage. However, diacetyl was not detected in ice creams after 14 d of storage. Eighty percent of panelists were able to distinguish between low-fat ice creams containing untreated WSU WPC with and without diacetyl, confirming panelists’ ability to detect diacetyl. However, panelists were not able to distinguish between low-fat ice creams containing untreated and HHP-treated WSU WPC with diacetyl. These results show that WPC diacetyl-binding properties were not enhanced by 300-MPa HHP treatment for 15 min, indicating that HHP may not be suitable for such applications.  相似文献   

4.
ABSTRACT: The effects of high hydrostatic pressure (HHP) on flavor-binding properties of whey protein concentrate (WPC) were determined with benzaldehyde, heptanone, octanone, and nonanone. After HHP treatment (600 MPa, 50 °C, for 0-, 10-, or 30-min holding time), flavor-binding properties of WPC were studied by intrinsic fluorescence titration and static headspace analysis. The HHP treatments increased the number of binding sites and the apparent dissociation constants of WPC for benzaldehyde. HHP treatment of WPC for 0 min increased the number of binding sites of WPC for heptanone and octanone. As observed by headspace analysis, HHP treatments did not result in significant changes in the flavor retention for benzaldehyde in WPC solutions. Flavor retention of 100 ppm and 200 ppm heptanone and octanone in HHP-treated (10 min) WPC was significantly lower than for untreated WPC and HHP-treated WPC for 0 min or 30 min. For flavor retention of nonanone, significant decreases were only observed at 100 ppm when WPC solutions were HHP-treated for 10 min. While use of HHP treatment of WPC has potential in real food systems, these findings demonstrate the importance of careful selection of HHP treatment times and flavor concentrations for desired outcomes in food applications.  相似文献   

5.
The influence on their whipping properties of homogenization at first and second stage pressures of 3.5/1.5 MPa and addition of whey protein concentrate (WPC) powder at three different (0.7, 1.4, and 2.1 wt percentage) concentrations to sweetened and homogenized creams was studied. Homogenization of cream significantly decreased maximum overrun and made the foam microstructure less open, while increasing whipping time, cream and foam lightness (Hunter L -value) and apparent viscosity. It also resulted in a less elastic foam structure with an increased drainage. Addition of WPC decreased the amount of maximum overrun, foam drainage and its lightness in parallel with developing a more compact microstructure. It increased the whipping time, apparent viscosity of unwhipped creams and foams, and resulted in a less elastic foam structure. The apparent viscosity of whipped cream with 2.1 wt percentage WPC, however, was lower than that of whipped cream with 1.4 wt percentage WPC, due most probably to the start up of gel formation at 2.1% WPC concentration in sweetened cream when it was sheared. Fresh foam whipped from sweetened cream with 2.1 wt percentage WPC also tended to have a slightly but not statistically significant lower elastic modulus (G') than fresh foam whipped from sweetened cream with 1.4 wt percentage WPC. This concentration can be considered as the critical value for gel formation in sweetened creams enriched by whey proteins when sheared. This study indicated the potential of WPC powder for reducing foam drainage from whipped homogenized sweetened cream.  相似文献   

6.
The aim of this research was to evaluate the protein pattern, immunoreactivity and amino acid composition of soybean seeds and commercial tofu after treating by high hydrostatic pressure (HHP) (300 MPa, 15 min, 40 °C), as well as of sprouts obtained from unpressurised and HHP-treated seeds. HHP did not affect the electrophoretic profile of soybean seeds or tofu protein extracts, but lower intensity of some protein bands were observed in HHP-treated products. A significant (P ? 0.05) reduced antigenicity was observed in the sprouts from HHP-treated seeds compared to the sprouts from untreated seeds, while higher antigenicity of the pressurised seeds compared with the untreated ones was found. HHP decreased the total essential amino acid content as well as two nutritional indexes, the Chemical Score (CS) and the Essential Amino Acid Index (EAAI), but only by 18%. The findings suggest that HHP applied to soybean seeds before germination could constitute a valuable technological approach for the industrial production of nutritive hypoallergenic soybean sprouts.  相似文献   

7.
The effects of whipping temperature (5 to 15°C) on the whipping (whipping time and overrun) and rheological properties of whipped cream were studied. Fat globule aggregation (aggregation ratio of fat globules and serum viscosity) and air bubble factors (overrun, diameter, and surface area) were measured to investigate the mechanism of whipping. Whipping time, overrun, and bubble diameters decreased with increasing temperature, with the exception of bubble size at 15°C. The aggregation ratio of fat globules tended to increase with increasing temperature. Changes in hardness and bubble size during storage were relatively small at higher temperatures (12.5 and 15°C). Changes in overrun during storage were relatively small in the middle temperature range (7.5 to 12.5°C). From the results, the temperature range of 7.5 to 12.5°C is recommended for making whipped creams with a good texture, and a specific temperature should be decided when taking into account the preferred overrun. The correlation between the whipped cream strain hardness and serum viscosity was high (R2 = 0.906) and persisted throughout the temperature range tested (5 to 15°C). A similar result was obtained at a different whipping speed (140 rpm). The multiple regression analysis in the range of 5 to 12.5°C indicated a high correlation (R2 = 0.946) in which a dependent variable was the storage modulus of whipped cream and independent variables were bubble surface area and serum viscosity. Therefore, fat aggregation and air bubble properties are important factors in the development of cream hardness. The results of this study suggest that whipping temperature influences fat globule aggregation and the properties of air bubbles in whipped cream, which alters its rheological properties.  相似文献   

8.
Buttermilk is a dairy ingredient widely used in the food industry because of its emulsifying capacity and its positive impact on flavor. Commercial buttermilk is sweet buttermilk, a by-product from churning sweet cream into butter. However, other sources of buttermilk exist, including cultured and whey buttermilk obtained from churning of cultured cream and whey cream, respectively. The compositional and functional properties (protein solubility, viscosity, emulsifying and foaming properties) of sweet, sour, and whey buttermilk were determined at different pH levels and compared with those of skim milk and whey. Composition of sweet and cultured buttermilk was similar to skim milk, and composition of whey buttermilk was similar to whey, with the exception of fat content, which was higher in buttermilk than in skim milk or whey (6 to 20% vs. 0.3 to 0.4%). Functional properties of whey buttermilk were independent of pH, whereas sweet and cultured buttermilk exhibited lower protein solubility and emulsifying properties as well as a higher viscosity at low pH (pH ≤ 5). Sweet, sour, and whey buttermilks showed higher emulsifying properties and lower foaming capacity than milk and whey because of the presence of milk fat globule membrane components. Furthermore, among the various buttermilks, whey buttermilk was the one showing the highest emulsifying properties and the lowest foaming capacity. This could be due to a higher ratio of phospholipids to protein in whey buttermilk compared with cultured or sweet buttermilk. Whey buttermilk appears to be a promising and unique ingredient in the formulation of low pH foods.  相似文献   

9.
Aggregation changes of whey protein induced by high-pressure microfluidization (HPM) treatment have been investigated in relation with their functional properties. Whey protein was treated with HPM under pressure from 40 to 160 MPa. Functional properties (solubility, foaming, and emulsifying properties) of whey protein concentrate (WPC) ultrafiltered from fluid whey were evaluated. The results showed significant modifications in the solubility (30% to 59%) and foaming properties (20% to 65%) of WPC with increasing pressure. However, emulsifying property of WPC treated at different pressures was significantly worse than untreated sample. To better understand the mechanism of the modification by HPM, the HPM-induced aggregation changes were examined using particle size distribution, scanning electron microscopy, and hydrophobicity. It was indicated that HPM induced 2 kinds of aggregation changes on WPC: deaggregation and reaggregation of WPC, which resulted in the changes of functional properties of WPC modified by HPM.  相似文献   

10.
11.
Surface hydrophobicity, solubility, gelation and emulsifying properties of high hydrostatic pressure (HHP)‐treated whey protein were evaluated. HHP treatment of whey protein buffer or salt solutions were performed at 690 MPa and initial ambient temperature for 5, 10, 20 or 30 min. Untreated whey protein was used as a control. The surface hydrophobicity of whey protein in 0.1 M phosphate buffers treated at pH 7.0 increased with an increase in HHP treatment time from 10 to 30 min. HHP treatments of whey protein in salt solutions at pH 7.0 for 5, 10, 20 or 30 min decreased the solubility of whey proteins. A significant correlation was observed between the surface hydrophobicity and solubility of untreated and HHP‐treated whey protein with r = ?0.946. Hardness of HHP‐induced 20, 25 or 30% whey protein gels increased with an increase in HHP treatment time from 5 to 30 min. An increase in the hardness of whey protein gels was observed as whey protein concentration increased. Whey proteins treated in phosphate buffer at pH 5.8 and 690 MPa for 5 min exhibited increased emulsifying activity. Whey proteins treated in phosphate buffer at pH 7.0 and 690 MPa for 10, 20 or 30 min exhibited decreased emulsifying activity. HHP‐treated whey proteins in phosphate buffer at pH 5.8 or 7.0 contributed to an increase in emulsion stability of model oil‐in‐water emulsions. This study demonstrates that HHP treatment of whey protein in phosphate buffer or salt solutions leads to whey protein unfolding observed as increased surface hydrophobicity. Whey proteins treated in phosphate buffers at pH 5.8 and 690 MPa for 5 min may potentially be used to enhance emulsion stability in foods such as salad dressings, sausage and processed cheese.  相似文献   

12.
In this work, the effects of sorbitan monostearate (Span 60) level on the particle size distribution, microstructure and apparent viscosity of the emulsion were investigated. Average particle size (d4,3), surface protein concentration, partial coalescence of fat and overrun of whipped cream during whipping were also determined. As Span 60 level increased (0–0.8%) in emulsion, the apparent viscosity was increased gradually, and the particle size range was narrowed, which was also detected by microstructure. A positive effect of whipping time was observed on the average particle size, partial coalescence of fat, surface protein concentration and overrun during whipping, respectively. An increase of Span 60 level resulted in a reduction of d4,3 values and partial coalescence of fat during 0–1 min whipping, then increasing after whipping for 2–5 min (0.6% Span 60 as the critical level). A negative behaviour was observed between surface protein concentration and Span 60. Moreover, Span 60 could improve the overrun and organoleptic properties of whipped cream efficiently.  相似文献   

13.
The objective of the study was to analyze the functional and nutritional properties of enzymatically hydrolyzed whey protein concentrate (WPC) and to formulate a beverage mix. WPC hydrolysates were produced using fungal protease and papain, at time intervals of 20, 40 and 60 min and were analyzed for proximate composition and functional properties. A beverage was formulated with hydrolyzed WPC, skim milk powder, cocoa, liquid glucose, sugar and vegetable fat and analyzed for physicochemical properties, sensory attributes and keeping quality. Results revealed that the protein content of WPC was 75.6% and decreased slightly on enzyme treatment (69.6%). The water absorption capacity of WPC was 10 ml/100 g and increased in enzyme treated samples from 16 to 34 ml/100 g with increase in the time of hydrolysis. Emulsion capacity (45 ml of oil/g of control WPC) showed a decreasing trend with increasing time of hydrolysis. Enzyme treatment slightly increased the foam capacity in three samples but lowered foam stability in all. The gel filtration pattern of enzyme treated samples showed an increase in low molecular weight fractions. The amino acid profile showed higher content of methionine in samples treated with enzymes, compared to the control. The in vitro protein digestibility of untreated WPC was 25% and increased in all treated samples to varying degrees (69–70%). Formulated beverage had 52% protein, 10% fat and 6.6% ash. There were no significant differences in the sensory attributes of formulated and commercial beverage. The formulated beverage could be stored well in a PET container for 30 days.  相似文献   

14.
An understanding of the effects of processing parameters can be applied to formulate emulsions with higher unsaturated fatty acid content. Emulsions using the typical ice cream formulation were produced by anhydrous milk fat alone or in a mixture with either olein or stearin at a 2:1 weight ratio. Effects of both pasteurization holding time (40 or 120 s at 80°C) and aging time (ranging from 2 to 24 h) on the structural and whipping properties of the emulsions were studied. Effects of these processing conditions on emulsion structural characteristics were determined using laser light-scattering measurements, rheological properties, microscopic observations, and image analyses of the whipped emulsions. Furthermore, foaming properties of these emulsions were compared and discussed with regard to effects of both processing and composition on properties of the emulsions, such as thixotropy and sensitivity to shearing. We observed changes in fat globules when different pasteurization holding times were applied, but no changes in either apparent viscosity values or sensitivity to shearing were traceable. However, enrichment of milk fat with the olein fraction increased the whipping ability of the emulsions, as evaluated in terms of overrun and the homogeneity of air bubbles, whatever the aging time. The lowest monodispersity of air bubbles was observed in the formulation rich in stearin. After 24 h of aging, this formulation showed the same overrun as the emulsion made with anhydrous milk fat. Increasing the aging time decreased the overrun by approximately 30%, and increasing the pasteurization holding times decreased it by approximately 20%. In general, in our conditions, increasing the aging time and unsaturated fatty acid content reduced changes in the dynamic rheological and structural properties observed just after production of the emulsions, whatever the pasteurization holding time or fat composition applied.  相似文献   

15.
Membrane-processed acid whey protein concentrates were studied for their foaming and emulsifying properties in dilute whey protein solutions and in a 30% fat emulsion. Among the compositional factors and physicochemical characters which significantly correlated with foaming and emulsifying properties were protein hydrophobicity, solubility, free-sulfhydryl content, phosphorus and β-lactoglobulin concentration. Heptane binding was negatively correlated with foam overrun and foam stability of whey protein solutions, whereas, exposed hydrophobicity was positively correlated with overrun in the whipped topping.  相似文献   

16.
The ability of whey protein concentrates (WPC) to form highly expanded and stable foams is critical for food applications such as whipped toppings and meringue-type products. The foaming properties were studied on six experimental and three commercial WPC, manufactured by membrane fractionation processes to contain reduced lipids and calcium. Lipid-reduced WPC had excellent foaming properties. Experimental delipidized WPC MF 0.45 and commercial delipidized WPC E had higher (P < 0.05) foam expansion than egg white protein (EWP). However. WPC B made bv low-pH UF and isoelectric orecinitation did not form a foam. Lipids and ash were the main factors affecting foaming properties.  相似文献   

17.
Bulk oils and oil-in-water emulsions were subjected to high hydrostatic pressure (HHP) (200, 650 MPa) treatment so as to estimate the effect of applied pressures on lipid oxidation. HHP-treated and non-treated samples were left to autoxidise under accelerated conditions (2 weeks, 70 °C) and their oxidative status was periodically estimated by measurement of conjugated dienes and peroxide value. Total changes of thiobarbituric acid-reactive substances were recorded as additional oxidative markers for emulsions. Results showed an increase in oxidation as pressure was increased especially at 650 MPa. Lipid oxidation rates that were more pronounced for HHP-treated samples can be correlated to measured dissolved oxygen that was also higher. HHP did not seem to have an effect on emulsion droplet size. The addition of Majorana syriaca (200 ppm) ethyl acetate extract led to protection against lipid oxidation under HHP and atmospheric conditions, 20.9–38.7% and 28.9–43.2%, respectively. It was observed that the antioxidant effect of M. syriaca extract under HHP was weaker.  相似文献   

18.
ABSTRACT: Foams were formed by whipping whey protein solutions (15% w/v protein) containing NaCl, CaCl2, lactose, or glycine. Foam overrun and yield stress were determined. Foams made from whey protein ingredients have greater overrun and yield stress if the concentration of β-lactoglobulin is high relative to a-lactalbumin. The presence of 0.4 M CaCl2 in the foaming solution increases overrun and yield stress for β-lactoglobulin and a-lactalbumin. The high yield stress of β-lactoglobulin and a-lactalbumin foams made from solutions containing CaCl2 suggests that CaCl2 is altering rheological properties of the interfacial protein film and/or contributing to protein aggregation or network formation in the lamellae.  相似文献   

19.
《Journal of dairy science》1988,71(3):857-862
With the application of UHT technology to the processing of whipping creams, consumers 5 purchase creams with whipping characteristics different from creams processed by conventional pasteurization. This study observed differences in whipping properties among raw, pasteurized, and UHT whipping creams. Whipping time to reach maximum volume, number of days before and after retail sell-by date, and overrun were recorded. Mean whipping time and maximum overrun varied significantly by processor, product composition, and retail cream age. Mean whipping time ranged from 1.6 min for raw unpasteurized creams to 3.4 min for UHT heavy cream without whipping aids. Mean maximum overrun ranged from 141% for UHT heavy creams without whipping aids to 216% for UHT whipping creams with aids. There was considerable variation in mean whipping time and mean maximum overrun among processors for creams of the same composition. Regression analysis between whipping time and retail cream age revealed a positive relationship for some product types and a negative relationship for others. Whipping time and maximum overrun of retail whipping creams vary substantially by product type, processing treatment, and processor.  相似文献   

20.
研究在不同处理压力和时间条件下,高静压对新鲜全蛋液微生物(细菌总数、大肠菌群)、色泽、乳化特性(乳化活力、乳化稳定指数)及起泡特性(起泡性、泡沫稳定性)的影响。结果表明:200 MPa处理10 min,全蛋液微生物指标已符合国家标准;相比空白组,400 MPa处理10 min,全蛋液乳化活力及乳化稳定性显著增加,300 MPa处理20 min及400 MPa处理10 min全蛋液起泡性较好,而400 MPa处理10~15 min及500 MPa处理5~15 min可使全蛋液颜色更鲜亮。综上,适当的高静压处理可使全蛋液达到有效杀菌且改善其品质的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号