首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theoretical investigation of wave scattering and the active modification of wave scattering at structural junctions is presented. A resonant and a non-resonant Euler-Bernoulli beam are coupled, and an external force is introduced at the junction. The external force is intended for feedforward control in order to manipulate the scattering properties at the junction. The purpose of the investigated control law is to make the junction non-reflective in the case of an incident bending wave. The control effort and the resulting power flow are investigated for different properties of the beams. By introducing damping in the resonant beam all incidence wave power is absorbed either passively, in the resonant beam, or actively, by the force. The results form the basis for a discussion of the possible benefits of using such a configuration for hybrid passive-active vibration control. The results show that for certain ratios of bending stiffness and mass the presented hybrid passive-active solution may offer advantages compared to purely passive or purely active solutions.  相似文献   

2.
This paper analyzes the physical meaning of the active and reactive power flow in the finite L-shaped beams and studies the active vibration control of the structures based on the active and reactive power flow.The traveling wave approach is used to calculate the structural dynamic responses.Because the error of control force is inevitable in practical applications,the effects of the error of control force on the control results are studied.The study indicates that the error of control force has pronounced ...  相似文献   

3.
Analytical and closed form solutions are presented in this paper for the vibration response of an L-shaped plate under a point force or a moment excitation. Inter-relationships between wave components of the source and the receiving plates are clearly defined. Explicit expressions are given for the quadratic quantities such as input power, energy flow and kinetic energy distributions of the L-shaped plate. Applications of statistical energy analysis (SEA) formulation in the prediction of the vibration response of finite coupled plate structures under a single deterministic forcing are examined and quantified. It is found that the SEA method can be employed to predict the frequency averaged vibration response and energy flow of coupled plate structures under a deterministic force or moment excitation when the structural system satisfies the following conditions: (1) the coupling loss factors of the coupled subsystems are known; (2) the source location is more than a quarter of the plate bending wavelength away from the source plate edges in the point force excitation case, or is more than a quarter wavelength away from the pair of source plate edges perpendicular to the moment axis in the moment excitation case due to the directional characteristic of moment excitations. SEA overestimates the response of the L-shaped plate when the source location is less than a quarter bending wavelength away from the respective plate edges owing to wave coherence effect at the plate boundary.  相似文献   

4.
An optimal design of a hybrid vibration absorber (HVA) with a displacement and a velocity feedback for minimizing the velocity response of the structure based on the H(2) optimization criterion is proposed. The objective of the optimal design is to reduce the total vibration energy of the vibrating structure under wideband excitation, i.e., the total area under the velocity response spectrum is minimized in this criterion. One of the inherent limitations of the traditional passive vibration absorber is that its vibration suppression is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The active element of the proposed HVA helps further reduce the vibration of the controlled structure, and it can provide very good vibration absorption performance even at a low mass ratio. Both the passive and active elements are optimized together for the minimization of the mean square velocity of the primary system as well as the active force required in the HVA. The proposed HVA was tested on single degree-of-freedom (SDOF) and continuous vibrating structures and compared to the traditional passive vibration absorber.  相似文献   

5.
The objective of this work is to present the finite element modeling of laminate composite plates with embedded piezoelectric patches or layers that are then connected to active-passive resonant shunt circuits, composed of resistance, inductance and voltage source. Applications to passive vibration control and active control authority enhancement are also presented and discussed. The finite element model is based on an equivalent single layer theory combined with a third-order shear deformation theory. A stress-voltage electromechanical model is considered for the piezoelectric materials fully coupled to the electrical circuits. To this end, the electrical circuit equations are also included in the variational formulation. Hence, conservation of charge and full electromechanical coupling are guaranteed. The formulation results in a coupled finite element model with mechanical (displacements) and electrical (charges at electrodes) degrees of freedom. For a Graphite-Epoxy (Carbon-Fibre Reinforced) laminate composite plate, a parametric analysis is performed to evaluate optimal locations along the plate plane (xy) and thickness (z) that maximize the effective modal electromechanical coupling coefficient. Then, the passive vibration control performance is evaluated for a network of optimally located shunted piezoelectric patches embedded in the plate, through the design of resistance and inductance values of each circuit, to reduce the vibration amplitude of the first four vibration modes. A vibration amplitude reduction of at least 10 dB for all vibration modes was observed. Then, an analysis of the control authority enhancement due to the resonant shunt circuit, when the piezoelectric patches are used as actuators, is performed. It is shown that the control authority can indeed be improved near a selected resonance even with multiple pairs of piezoelectric patches and active-passive circuits acting simultaneously.  相似文献   

6.
We developed a plate-shaped non-contact transporter based on ultrasonic vibration, exploiting a phenomenon that a plate can be statically levitated at the place where its gravity and the acoustic radiation force are balanced. In the experiment, four piezoelectric zirconate titanate elements were attached to aluminum plates, on which lattice flexural vibration was excited at 22.3 kHz. The vibrating plates were connected to a loading plate via flexible posts that can minimize the influence of the flexure induced by heavy loads. The distribution of the vibration displacement on the plate was predicted through finite-element analysis to find the appropriate positions of the posts. The maximum levitation height of this transporter was 256 μm with no load. When two vibrating plates were connected to a loading plate, the maximum transportable load was 4.0 kgf.  相似文献   

7.
黎胜  于丹竹 《声学学报》2016,41(6):820-832
结构振动和声辐射的可控性和可观性指标对有源控制系统作动器/传感器的布置具有重要意义。对结构振动和声辐射的可控性和可观性指标进行了研究,提出了基于声压输出的振动模态可观性指标,在振动模态可控性和可观性指标的基础上,结合振动模态的声辐射效率,提出了结构声辐射的可控性和可观性指标和基于声压输出的可观性指标。以板结构为例,对结构振动和声辐射的可控性和可观性指标进行了计算分析和讨论,比较了基于声压输出和基于振动响应输出的振动模态可观性,重点研究了基于声压输出的振动模态可观性和结构振动及声辐射的可观性特点,最后对指标值在结构声有源控制中输入(输出)位置选择上的应用进行了讨论和比较,通过数值仿真对指标的有效性进行了验证。   相似文献   

8.
通过对协同方程的求解,得到在二维方腔内换热效果最优的流场形态随粘性阻力的增加而转变的现象。本文利用附加体积力和挡板的手段,用数值方法再现了粘性耗散不同时最优流场的几种流动形态。不同工况下的数值结果证实了换热效果较好的流动形态会随着粘性阻力的增加而发生转变的观象。最后,讨论了挡板热导率等参数对换热效果的影响。  相似文献   

9.
A type of dual-mass vibration energy harvester, where two masses are connected in series with the energy transducer and spring, is proposed and analyzed in this paper. The dual-mass vibration energy harvester is proved to be able to harvest more energy than the traditional single degree-of-freedom (dof) one when subjected to harmonic force or base displacement excitations. The optimal parameters for maximizing the power output in both the traditional and the new configurations are discussed in analytical form while taking the parasitic mechanical damping of the system into account. Consistent of the previous literature, we find that the optimal condition for maximum power output of the single dof vibration energy harvester is when the excitation frequency equals to the natural frequency of the mechanical system and the electrical damping due to the energy harvesting circuit is the same as the mechanical damping. However, the optimal conditions are quite different for the dual-mass vibration energy harvester. It is found that two local optimums exist, where the optimal excitation frequency and electrical damping are analytically obtained. The local maximum power of the dual-mass vibration energy harvester is larger than the global maximum power of single dof one. Moreover, at certain frequency range between the two natural frequencies of the dual-mass system, the harvesting power always increases with the electrical damping ratio. This suggests that we can obtain higher energy harvesting rate using dual-mass harvester. The sensitivity of the power to parameters, such as mass ratio and tuning ratio, is also investigated.  相似文献   

10.
This paper studies the controllability and observability measures of structural vi?bration and acoustic radiation and proposes a measure of modal observability based on acoustic pressure outputs and measures of controllability and observability of acoustic radiation by combining the measures of modal controllability and observability of vibration modes with corresponding modal acoustic radiation efficiencies. A plate with control force inputs and vibrational response outputs and acoustic pressure outputs is involved to show the modal controllability and observability measures of vibration modes and measures of controllability and observabil?ity of structural vibration and acoustic radiation. Observability measures based on vibrational response outputs and acoustic pressure outputs are compared and the emphasis is on the mea?sures based on the acoustic pressure outputs. Finally the application and usefulness of the controllability and observability measures to active control of structural vibration and acous?tic radiation are illustrated and compared. It shows that the controllability and observability measures provide useful guidance for active control design especially in optimal actuator and sensor placement.  相似文献   

11.
Self-powered active vibration control using a single electric actuator   总被引:1,自引:0,他引:1  
The authors have proposed self-powered active vibration control systems that achieve active vibration control using regenerated vibration energy. Such systems do not require external energy to produce a control force. This paper presents a self-powered system in which a single actuator realizes active control and energy regeneration.The system proposed needs to regenerate more energy than it consumes. To discuss the feasibility of this system, the authors proposed a method to calculate the balance between regenerated and consumed energies, using the dynamical property of the system, the feedback gain of the active controller, the specifications of the actuator, and the power spectral density of disturbance. A trade-off was found between the performance of the active controller and the energy balance. The feedback gain of the active controller is designed to have good suppression performance under conditions where regenerated energy exceeds consumed energy.A practical system to achieve self-powered active vibration control is proposed. In the system, the actuator is connected to the condenser through relay switches, which decide the direction of the electric current, and a variable resistor, which controls the amount of the electric current. Performance of the self-powered active vibration was examined in experiments; the results showed that the proposed system can produce the desired control force with regenerated energy, and that it had a suppression performance similar to that of an active control system using external energy. It was found that self-powered active control is attainable under conditions obtained through energy balance analysis.  相似文献   

12.
Feedforward active control of the flexural waves in a single and L-shaped plate has been analytically and experimentally investigated. The plates are simply supported along two parallel edges, and free at the other two ends. Point forces were used to generate the primary and secondary plate excitations. The plate flexural displacement is described by a combination of a travelling wave solution and a modal expansion. The flexural wave coefficients were determined using the boundary conditions, continuity equations at the driving force locations, and continuity equations at the corner junction for the L-shaped plate. The control actuator and error sensor are optimally located in order to achieve the best control performance.  相似文献   

13.
The control of the forced vibration response of structures through the optimal tuning of its supports is desirable in many applications. Tuning may enhance the dissipation of vibration energy within the supports, thereby reducing fatigue and structure-borne noise. Two different models were developed to calculate the optimal support stiffness that minimizes the velocity response of homogeneous plates. The first model, based on the wave propagation at the edge, yields a good first cut approximation of the optimal properties. The optimal viscous and viscoelastic support stiffness for minimal reflection at the edge was calculated. Maximum absorption of the incident waves occurs when the viscous support stiffness matches the characteristic mechanical impedances of the plate. The second model, based on the Rayleigh-Ritz method, yields more accurate estimates of the optimal support stiffness required to minimize the forced velocity response of the finite rectangular plate. The optimal support properties calculated from the two different methods were in good agreement. This suggested that the modal response of the plate is strongly influenced by the wave reflections at the edges. Finally, the effects of support properties on the sound radiated from the plate were investigated. The optimal support stiffness that minimizes the radiated sound power was found to be smaller than the value that minimizes the velocity response. The results show that both the velocity response and sound radiation are strongly influenced by dissipation of vibration energy at the edges, and demonstrate that support tuning can yield significant noise and vibration reduction.  相似文献   

14.
This study deals with the feedforward active control of sound transmission through a simply supported rectangular panel using vibration actuators. The control effect largely depends on the excitation method, including the number and locations of actuators. In order to obtain a large control effect at low frequencies over a wide frequency, an active transmission control method based on single structural mode actuation is proposed. Then, with the goal of examining the feasibility of the proposed method, the (1, 3) mode is selected as the target mode and a modal actuation method in combination with six point force actuators is considered. Assuming that a single input single output feedforward control is used, sound transmission in the case minimizing the transmitted sound power is calculated for some actuation methods. Simulation results showed that the (1, 3) modal actuation is globally effective at reducing the sound transmission by more than 10?dB in the low-frequency range for both normal and oblique incidences. Finally, experimental results also showed that a large reduction could be achieved in the low-frequency range, which proves the validity and feasibility of the proposed method.  相似文献   

15.
A method is devised to control the current, shot noise and Fano factor in a molecular junction using external fields. The tunneling of electrons through a molecular junction weakly coupled to two leads in the presence of a time-dependent external field is studied using a quantum master equation approach. By combining optimal control theory and assuming a predefined time-dependent current pattern, an external field can be determined which does generate a current pattern close to the requested one. With this approach the current flow pattern in time can be chosen in an almost arbitrary fashion. The same technique can be applied to control the shot noise. For minimizing the current, the corresponding shot noise decreases but does not vanish. By minimizing the shot noise, the corresponding current also approaches zero for the present model of spinless electrons. Within certain limits the proposed strategy even works well for the control of the Fano factor.  相似文献   

16.
This paper is focused on the vibration effects produced by an array of decentralised velocity feedback loops that are evenly distributed over a rectangular thin plate to minimise its flexural response. The velocity feedback loops are formed by collocated ideal velocity sensor and point force actuator pairs, which are unconditionally stable and produce ‘sky-hook’ damping on the plate. The study compares how the overall flexural vibration of the plate and the local absorption of vibration power by the feedback loops vary with the control gains. The analysis is carried out both considering a typical frequency-domain formulation based on kinetic energy and structural power physical quantities, which is normally used to study vibration and noise problems, and a time-domain formulation also based on kinetic energy and structural power, which is usually implemented to investigate control problems. The time-domain formulation shows to be much more computationally efficient and robust with reference to truncation errors. Thus it has been used to perform a parametric study to assess if, and under which conditions, the minimum of the kinetic energy and the maximum of the absorbed power cost functions match with reference to: (a) the number of feedback control loops, (b) the structural damping in the plate, (c) the mutual distance of a pair of control loops and (d) the mutual gains implemented in a pair of feedback loops.  相似文献   

17.
When multiple actuators and sensors are used to control the vibration of a panel, or its sound radiation, they are usually positioned so that they couple into specific modes and are all connected together with a centralized control system. This paper investigates the physical effects of having a regular array of actuator and sensor pairs that are connected only by local feedback loops. An array of 4 x 4 force actuators and velocity sensors is first simulated, for which such a decentralized controller can be shown to be unconditionally stable. Significant reductions in both the kinetic energy of the panel and in its radiated sound power can be obtained for an optimal value of feedback gain, although higher values of feedback gain can induce extra resonances in the system and degrade the performance. A more practical transducer pair, consisting of a piezoelectric actuator and velocity sensor, is also investigated and the simulations suggest that a decentralized controller with this arrangement is also stable over a wide range of feedback gains. The resulting reductions in kinetic energy and sound power are not as great as with the force actuators, due to the extra resonances being more prominent and at lower frequencies, but are still worthwhile. This suggests that an array of independent modular systems, each of which included an actuator, a sensor, and a local feedback control loop, could be a simple and robust method of controlling broadband sound transmission when integrated into a panel.  相似文献   

18.
Finite element modelling of laminated structures with distributed piezoelectric sensor and actuator layers and control electronics is considered in this paper. Beam, plate and shell type elements have been developed incorporating the stiffness, mass and electromechanical coupling effects of the piezoelectric laminates. The effects of temperature on the electrical and mechanical properties and the coupling between them are also taken into consideration in the finite element formulation. The piezoelectric beam element is based on Timoshenko beam theory. The plate/shell element is a nine-noded field-consistent element based on first order shear deformation theory. Constant-gain negative velocity feedback, Lyapunov feedback as well as a linear quadratic regulator (LQR) approach have been used for active vibration control with the structures subjected to impact, harmonic and random excitations. The influence of the pyroelectric effects on the vibration control performance is also investigated. The LQR approach is found to be more effective in vibration control with lesser peak voltages applied in the piezo actuator layers as in this case the control gains are obtained by minimizing a performance index. The application of these elements in high-performance, light-weight structural systems is highlighted.  相似文献   

19.
弯管对末端带弹性障板充液管路辐射声能量的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
基于声固耦合有限元方法建立了末端带弹性障板的充液管路数值模型,重点分析了不同激励下弯管对管口辐射声能量的影响.结果表明:弯管引入的高阶周向模式耦合使结构振动和流体声传播都发生明显改变,以致系统辐射声能量及主要能量贡献源也发生转移,并随激励方式和频率而不同.对本文管路模型,平面波激励下弯管系统在低频的结构辐射声能量明显增...  相似文献   

20.
This study attempted to control the radiated exterior noise from a rectangular enclosure in which an internal plate vibrates by acoustic excitation and noise is thus radiated from that plate. Multi-channel active control was applied to reduce the vibration and external radiation of this enclosed plate. A piezoelectric ceramic was used as a distributed actuator for multiple mode control of the vibration and radiated noise in the acoustically excited plate. To maximize the effective control, an approach was proposed for attachment the piezoelectric actuator in the optimal location. The plate and internal acoustic space in the enclosure are coupled with each other. This will change dominant frequency characteristics of the plate and, thus, those of the externally radiated noise. Active noise control was accomplished using an accelerometer attached to the plate and a microphone placed adjacent to that plate as an error sensor under acoustic excitation of sine wave and white noise. It was found that the control of radiated external radiation noise requires a microphone as an error sensor, a sound pressure sensor due to vibration of the plate, differences in the dominant frequency of externally radiated noise, and complex vibration modes of the plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号