首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为了提高Y-Gd-Hf-O压制式高温阴极的热发射性能,制备了Y2O3/HfO2摩尔比不同的S2O3掺杂Y-Gd-Hf-O直热式压制阴极。测试结果显示,当比值为5/2时,热发射能力最好,1500 ℃下发射电流为2.79 A/cm2。阴极支取直流发射电流密度1.0 A/cm2,在1500 ℃的工作温度下,已经稳定工作了1320 h,并在该温度下经过696 h的10 W连续电子轰击后,发射电流仍保持为初始值的86%,表现出良好的耐电子轰击能力。XPS结合深度刻蚀表明,发射活性层主要集中在距表面50 nm深度范围内。表层SEM、EDS分析表明,阴极经过激活、老炼,活性物质粒径变大,Y/Hf原子比低于初始值,且随着Y2O3含量的提高,阴极表层n型半导体Y2O3-x的含量相应地增加,对改善阴极表面的导电性、降低逸出功和提高阴极的热发射性能有促进作用  相似文献   

2.
轰击式LaB6阴极是一种电子枪的新型阴极,它不仅具有良好的电子光学系统结构,而且电子发射能力强大,对大功率电子枪的研制和开发具有重要意义。论述了新型轰击式LaB6阴极的工作原理、研究的意义、阴极材料的选择,并完成了轰击式阴极的设计和计算,设计完成了轰击式LaB6阴极的试验装置。通过试验得到,该轰击式LaB6阴极在阴极温度为1843K时具有最大发射电流450mA,其发射电流密度为3.58A/cm^2。列举了典型试验数据并进行分析,得到所选用的LaB6的发射常数A为21.33,逸出功Фs为2.6eV,这与理论值非常接近,证明了试验的准确性和可靠性,该试验结果为大功率电子枪的研究开发、为大功率电子束焊接设备的研制奠定了基础。  相似文献   

3.
ZnFe2O4基材料在NaF-AlF3-Al2O3熔盐中的腐蚀   总被引:7,自引:0,他引:7  
采用锌铁尖晶石材料作为铝电解惰性阳极,考察了这种阳极在 熔盐中的腐蚀 行为,阳极电流密度为0~2.5A/cm2.实验结果表明,锌铁尖晶石材料在阳极极化条件下的NaF-AlF3-Al2O3熔盐中具有很好的耐腐蚀性能.在低电流密度下,阳极材料的腐蚀速度随电流密度的增大而增大,最高的腐蚀速度出现于0.5~0.75A/cm2.此后,腐蚀速度随电流密度的增大而降低.实验证明,高阳极电流密度(>1.5A/cm2)、熔盐电解质中保持高Al2O3含量和低NaF/AlF3摩尔比,对降低阳极材料的腐蚀速度有利,这也将是惰性阳极应用的重要条件.  相似文献   

4.
纳米复合W-La2O3材料的表面行为与热发射性能   总被引:7,自引:0,他引:7  
采用"液液掺杂-冷冻干燥两段还原-SPS"法制备了纳米W-La2O3发射材料,利用原位俄射电子能谱分析技术研究了高温过程中发射材料的表层元素含量以及纵向元素分布,并采用自行研制的微机控制全自动电子发射测量装置测试了材料发射性能.研究表明:纳米W-La2O3发射材料的有效逸出功为2.92 eV,1 773 K下零场发射电流密度为2.52 A/cm2;加热过程中,材料体内以La2O3形式存在的镧、氧向表面扩散,在表层10 nm的地方出现La、O富集区,并形成了超额La,对电子发射起积极作用.  相似文献   

5.
研究了家用微波炉磁控管碳化La2 O3 Mo阴极 ,参照碳化ThO2 W阴极磁控管的制作工艺 ,成功实现了La2 O3 Mo阴极的碳化以及碳化La2 O3 Mo阴极磁控管的去气、激活。碳化La2 O3 Mo阴极的微波能量输出功率为 5 0 0W ,而同类型的碳化ThO2 W阴极磁控管的额定微波能量输出为 90 0W。通过分析认为 ,碳化La2 O3 Mo阴极磁控管微波输出能量不足的主要原因在于碳化La2 O3 Mo阴极材料本身的电子发射能力不足。  相似文献   

6.
采用硼/碳热还原-热压烧结集成工艺(BCTR&HP)制备了高纯致密的Sm1-2xEuxBaxB6(x=0.1,02,0.3)多晶块体,系统研究Eu&Ba掺杂SmB6对其结构、力学性能与电学特性的影响。结果表明,BCTR&HP制备的Sm1-2xEuxBaxB6呈CsC1型简单立方单相结构,晶格常数随Eu&Ba掺杂量的增加而增大,贡献于力学性能的提高和电阻率的下降。热电子发射性能结果表明,Eu&Ba掺杂能够改善SmB6阴极材料的发射特性,在测试温度1773 K,外加电压1 kV条件下,Sm0.4Eu0.3Ba0.3B6阴极的发射电流密度达到35.1 mA·cm-2,零场电流密度达到21.4 mA·cm-2,在1523~1773 K其平均有效功函数为3.6 eV,其固有的高电阻率可作为"直热式"阴极简化热子结构,具有很大的应用前景。  相似文献   

7.
采用溶胶凝胶结合氢还原法制备出Sc均匀掺杂的钨粉,随后采用微波烧结法成功制备出浸渍型含钪扩散阴极。对Sc掺杂钨粉特性、Sc掺杂钨海绵基体微观结构、阴极发射性能和阴极表面活性物质分布进行了分析,结果显示:Sc以Sc2O3的形态均匀分布于平均粒径1μm的钨粉中,海绵体骨架主要由大小均匀的亚微米级准球形颗粒构成,表面孔结构良好,孔分布均匀,平均孔径在0.46μm左右,Sc_2O_3均匀分布于基体之中。电子发射测试结果表明,该阴极950℃b时脉冲偏离点电流密度Jdiv为137.59 A/cm~2,发射斜率1.431。激活后的阴极表面Ba:Sc:O的原子比例为1.8:1:2.2,同时阴极表面存在大量的纳米粒子,对阴极发射有促进作用。  相似文献   

8.
采用喷雾干燥结合两步氢还原法制备出W-Re混合粉末,并在此基础上通过压制、烧结和浸渍工艺制备出W-Re混合基浸渍型阴极。采用SEM、XRD、AES对W-Re混合基阴极的微观形貌、物相、表面活性元素进行表征分析,并用电子发射测试系统测试阴极在950~1050℃的脉冲电子发射性能。结果表明,铼的含量决定了阴极基体的物相,铼含量为75%(原子分数)的W-75Re阴极由Re3W单一物相组成,该阴极由于铼含量较高使得基体晶粒尺寸更细小,有利于活性自由钡的生成及其在阴极表面的扩散,从而W-75Re阴极具有相对较低的逸出功和较高的发射电流密度,其在1000℃b时的零场脉冲发射电流密度为14.03 A·cm~(-2),有效逸出功为1.902 e V。  相似文献   

9.
成波 《热加工工艺》2012,41(10):100-102
利用放电等离子(SPS)烧结工艺制备Mn掺杂In2O3多晶陶瓷材料。通过测试热电传输性和观察微观结构,研究了掺杂工艺对SPS烧结多孔结构In2O3陶瓷传输性能的影响。结果表明,低浓度掺杂的样品在测试温度范围内能得到较高的电导率和热电势;掺杂试样In1.99Mn0.01O3在973 K可获得最高的热电功率因子4.0×10-4W.K-2.m-1,从而可知,控制In2O3中低浓度的Mn的掺杂量可获得较好的高温n型热电材料。  相似文献   

10.
以Y2O3纳米颗粒伪层作中间层,用CSD法制备夹层结构的YBCO/Y2O3/YBCO薄膜。薄膜表面光滑致密,没有裂纹和空洞。XRD分析表明,YBCO/Y2O3/YBCO薄膜具有较强的c轴取向,其超导转变温度为92K,在60K零场下其临界电流密度达到6.9MA/cm2,表明YBCO/Y2O3/YBCO薄膜具有优良的超导性能。  相似文献   

11.
We calculated the binary phase diagrams B2O3–Ga2O3, B2O3–In2O3 and B2O3–Al2O3, and the Gibbs energy of formation of the binary compounds, using experimental liquidus data. The B2O3–Ga2O3 system is of industrial importance, because liquid B2O3, in which Ga2O3 is not very soluble, is used to protect GaAs during growth of single crystals of GaAs. During recovery of noble metals B2O3 is added to slags containing Al2O3 to lower the melting point and the viscosity. The B2O3–In2O3 system is of much less importance to industry. In all three systems we have a liquid miscibility gap, and also solid binary compounds, none of which melt congruently. The miscibility gaps are not surprising, because even in the B2O3–Bi2O3 system where four congruently melting compounds are present, a liquid miscibility gap exists close to B2O3.  相似文献   

12.
A glass based on Y2O3-BaO-SiO2-B2O3-Al2O3 (named YBA) has been investigated as sealant for planar solid oxide fuel cells (SOFCs). The YBA glass has been systematically characterized by differential thermal analysis, dilatometer, scanning electron microscopy, impedance analysis, and open circuit voltage to examine their suitability as sealant. The coefficient of thermal expansion of YBA is 11.64 × 10−6 K−1 between 323 and 873 K. The resistivity is 9.1 × 104 Ω cm at 800 °C. The glass sealant is found to be well adhered with other cell components, such as electrolytes and stainless steels, at an optimum sealing temperature of 800 °C. All measured results showed that the YBA glass appears to be a promising sealant for SOFCs.  相似文献   

13.
采用溶胶-凝胶法和低温燃烧技术制备Ce1-xSmxO2(x=0,0.1,0.2,0.3)和掺杂Sm和(2%-8%)Al2O3的二氧化铈;研究其合成、结构、致密化、导电性和热膨胀等性能,并利用XRD研究其结构和相组成。结果表明,于1300°C烧结球团,获得致密的陶瓷,于1250°C在Ce0.8Sm0.2O0.2中加入2%和4%的Al2O3以促进烧结。利用扫描电子显微镜观察烧结后球团的表面形貌,使用双探针交流阻抗谱研究总离子电导率。  相似文献   

14.
Pre-stressing scratching tests have been preformed on polished surfaces of Al2O3 ceramic under a Rockwell diamond indenter which moved with uniform speed and constant normal load to investigate how the pre-stress contributes to the material removal mechanism. With the measurement of acoustic emission signals as well as indenter tangential forces, surface damages and cross-section of grooves of Al2O3 ceramic were evaluated under the action of different values of pre-stress. It was found that the scratched groove width was increased with the increasing of pre-stress when same normal loads were applied. The existence of pre-stress tends to restrain the crack propagation along the direction of pre-stress, and obvious plastic deformation at the bottom of scratched groove has been observed. Moreover, the fluctuation of tangential force was obviously enhanced, and the magnitude of tangential force in the test of pre-stress was higher than that of without pre-stress. The acoustic emission signals showed that fewer damages were produced in the process of scratching with an appropriate pre-stress. However, the continuing increase of pre-stress would aggravate the machining process.  相似文献   

15.
We applied our model to the enthalpy of mixing data of the binary systems Na2O-SiO2, Na2O-GeO2, Na2O-B2O3, Li2O-B2O3, CaO-B2O3, SrO-B2O3, and BaO-B2O3. The most stable composition in the liquid, that is where the enthalpy of mixing is most negative, is with a metal-oxygen ratio of 4 to 3, for monovalent metals (Na and Li) and 3 to 4 for divalent metals (Ba and Ca) in liquid silicates or borates. The same applies to the CaO-SiO2, CaO-Al2O3, PbO-B2O3, PbO-SiO2, ZnO-B2O3, and ZnO-SiO2 systems. The oxygen to metal ratio, its constant value in various types of systems, reflects and describes the structure of the liquid. Using the analyzed enthalpies of mixing data and the available phase diagrams, we calculated the enthalpies of formation of the various binary compounds. The results are in excellent agreement with data in the literature that were obtained from direct solid-solid calorimetry.  相似文献   

16.
Available thermodynamic and phase diagram data have been critically assessed for all phases in the CrO-Cr2O3, CrO-Cr2O2-Al2O3, and CrO-Cr2O2-CaO systems from 298 K to above the liquidus temperatures and for oxygen partial pressures ranging from equilibrium with metallic Cr to equilibrium with air in the case of the first two systems and toP O 2 = 10−3 atm for the CrO-Cr2O3-CaO system. All reliable data have been simultaneously optimized to obtain one set of model equations for the Gibbs energy of the liquid slag and all solid phases as functions of composition and temperature. The modified quasichemical model was used for the slag. The models permit phase equilibria to be calculated for regions of composition, temperature, and oxygen potential where data are not available.  相似文献   

17.
Glasses with different Bi2O3 contents (37-42 mol%) have been prepared by conventional melt quench technique. The IR and Raman studies indicate that these glasses are made up of [BiO6], [BiO3], [BO3] and [BO4] basic structural units. The vibrations of [BiO3] and [BO3] become stronger as the content of Bi2O3 increases, which makes glass structure loosened. Viscosity of the glasses was measured by using a Rheotronic III paralleled plate rheometry, which shows that the viscosity of glass samples decreased when the content of Bi2O3 increased at the same temperature (400-460 °C). The temperature range which suits for glasses sealing was calculated by using the approximation of Arrhenian behaviour. The wetting performance of Bi2O3-ZnO-B2O3 glasses was described by using high-temperature microscope, which also proves that the structure of investigated Bi2O3-ZnO-B2O3 glasses become loosened due to the increasing of the content of Bi2O3.  相似文献   

18.
Solid solution ceramics (Al2O3)x(Cr2O3)1−x with different x in the range of 0 < x < 1 were synthesized via traditional ceramic production method. X-ray diffraction results and Rietveld refinements indicated that all samples possessed rhomb-centered structure and continuous solid solutions were synthesized. The samples were composed of irregular grains with several micrometers in diameter. Temperature dependence of magnetization measurements showed monotonous decreasing Néel temperature with increasing x and percolation effect happened with threshold of x = 0.65. As x became higher, weak ferromagnetism was observed in the samples. Field dependence of magnetization measurements further confirmed the weak ferromagnetism in the samples with x = 0.7, 0.8 and 0.9.  相似文献   

19.
A complete literature review, critical evaluation, and thermodynamic modeling of the phase diagrams and thermodynamic properties of all oxide phases in the MgO-Al2O3, CaO-MgO-Al2O3, and MgO-Al2O3-SiO2 systems at 1 bar total pressure are presented. Optimized model equations for the thermodynamic properties of all phases are obtained that reproduce all available thermodynamic and phase equilibrium data within experimental error limits from 25 °C to above the liquidus temperatures at all compositions. The database of the model parameters can be used along with software for Gibbs energy minimization to calculate all thermodynamic properties and any type of phase diagram section. The modified quasichemical model was used for the liquid slag phase and sublattice models, based upon the compound energy formalism, were used for the spinel, pyroxene, and monoxide solid solutions. The use of physically reasonable models means that the models can be used to predict thermodynamic properties and phase equilibria in composition and temperature regions where data are not available.  相似文献   

20.
B2O3-doped ZnO-Bi2O3-Sb2O3-based varistors were fabricated by conventional ceramic technique. The microstructure and electrical properties were investigated by SEM, XRD and electrical measurements. With the addition of B2O3, the liquid-assisted sintering based on Bi2O3 was improved, and the Bi2O3-B2O3 glass and Zn3(BO3)2 phase were formed on the grain boundaries. The doping of B2O3 markedly improved the varistor performance of the ZnO-Bi2O3-Sb2O3-based varistors. The nonlinear coefficient of the sample with 3.5 mol% B2O3 sintered at 1100 °C reached 56 and the leakage current was only 0.3 μA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号