首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation behavior of the (Cu78Y22)98Al2 bulk metallic glass containing 55% Cu5Y particles (CYA-composite) was studied over the temperature range of 400–600 °C in dry air. The results generally showed that the oxidation kinetics of the composite obeyed a two-stage parabolic-rate law, with its steady-state parabolic-rate constants (kp values) increased with temperature. In addition, the oxidation rates of the composite were significantly lower than those of the polycrystalline Cu–20%Y alloy. The scales formed on the composite consisted mostly of hexagonal-Y2O3 (h-Y2O3) and minor CuO, while significant amounts of Cu2O and CuO, with minor amounts of Y2O3 were detected for the Cu–20%Y alloy. It was found that the absence of Cu2O is responsible for the slower oxidation rates of CYA-composite.  相似文献   

2.
The surface oxide films on Alloy 600 have been investigated as a function of the solution temperature and the pH by using a cyclic voltammetry, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and a depth profiling by Auger electron spectroscopy (AES). H3BO3, Na2SO4 and NaOH aqueous solutions with temperatures in the range of 30–300 °C were used as the test solutions. As the solution temperature of the 0.5 M H3BO3 increased, the thickness of the passive film increased but the resistance of the passive film was diminished, which is coincident with a solution temperature dependency of the passive current in the potentiodynamic curve. The inner oxide film on Alloy 600 was distinguishable from the Cr-rich outer oxide film above 100 °C. From the Mott–Schottky relation, the oxide formed in 0.5 M H3BO3 at 300 °C showed a p-type semiconductor property, accompanied by a Cr-rich oxide film throughout the whole oxide film unlike the n-type oxide films up to 250 °C. The oxide resistance of the passive film decreased in the order of 0.5 M H3BO3, 0.1 M NaOH and 0.5 M Na2SO4, which is consistent with the pH dependency of the passive current. Ni-rich oxide films of a p-type were formed in the 0.5 M Na2SO4 or 0.1 M NaOH.  相似文献   

3.
Cathode material Sm0.5Sr0.5CoO3 (SSC) with perovskite structure for intermediate temperature solid oxide fuel cell was synthesized using glycine-nitrate process (GNP). The phase evolution and the properties of Sm0.5Sr0.5CoO3 were investigated. The single cell performance was also tested using La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) as electrolyte and SSC as cathode. The results show that the formation of perovskite phase from synthesized precursor obtained by GNP begins at a calcining temperature of 600 °C. The single perovskite phase is formed completely after sintering at a temperature of 1000 °C. The phase formation temperature for SSC with complete single perovskite phase is from 1000 to 1100 °C. The SrSm2O4 phase appeared in the sample sintered at 1200 °C. It is also found that the sample sintered at 1200 °C has a higher conductivity. The electrical conductivity of sample is higher than 1000 S/cm at all temperature examined from 250 to 850 °C, and the highest conductivity reaches 2514 S/cm at 250 °C. The thermal expansion coefficient of sample SSC is 22.8 × 10−6 K−1 from 30 to 1000 °C in air. The maximum output power density of LSGM electrolyte single cell attains 222 and 293 mW/cm2 at 800 and 850 °C, respectively.  相似文献   

4.
The morphology and phase transformation of the intermetallic compounds (IMCs) formed at the Sn–9Zn–3.5Ag/Cu interface in a solid-state reaction have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The monoclinic η′-Cu6Sn5 transforms to the hexagonal η-Cu6Sn5 and the orthorhombic Cu5Zn8 transforms to the body-centered cubic (bcc) γ-Cu5Zn8 as aged at 180 °C. The scallop-shaped Cu6Sn5 layer is retained after aging at 180 °C for 1000 h. In the solid-state reaction, Ag is repelled from η′-Cu6Sn5 and reacts with Sn to form Ag3Sn, and the Cu5Zn8 layer decomposes. Kirkendall voids are not observed at the Sn–9Zn–3.5Ag/Cu interface even after aging at 180 °C for 1000 h.  相似文献   

5.
6.
M. Eumann  G. Sauthoff  M. Palm   《Intermetallics》2008,16(5):706-716
Phase equilibria in the Fe–Al–Mo system were experimentally determined at 800 °C. From metallography, X-ray diffraction and electron probe microanalysis on equilibrated alloys and diffusion couples a complete isothermal section has been established. It is shown that the Laves phase Fe2Mo is a stable phase. The phase Al4Mo, which only becomes stable above 942 °C in the binary system, is the only ternary compound found at 800 °C. For all binary phases the solid solubility ranges for the third component have been established. The D03/B2 and B2/A2 transition temperatures have been determined for a selected alloy by differential thermal analysis and transmission electron microscopy. The results confirm that the D03/B2 transition temperature substantially increases by the addition of Mo, while the B2/A2 transition temperature is about that for a binary alloy with the same Al content.  相似文献   

7.
SrBi2(Ta0.5Nb0.5)2O9 (SBTN) thin films were obtained by polymeric precursor method on Pt/Ti/SiO2/Si(1 0 0) substrates. The film is dense and crack-free after annealing at 700 °C for 2 h in static air. Crystallinity and morphological characteristic were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FEG-SEM) and atomic force microscopy (AFM). The films displayed rounded grains with a superficial roughness of 3.5 nm. The dielectric permittivity was 122 with loss tangent of 0.040. The remanent polarization (Pr) and coercive field (Ec) were 5.1 μC/cm2 and 96 kV/cm, respectively.  相似文献   

8.
Series of perovskite-type compounds La1−aCaaCr0.8Ti0.2O3−δ (a=0–1.0) were synthesized by the ceramic technique in air (final heating 1350 °C). The crystal structure of the compounds after cooling in air to room temperature was characterized as orthorhombic in space group Pbnm. Analysis of the lattice constants shows a noticeable decrease with increasing Ca content. All compounds prepared were stable in air and in a stream of Ar/1 Pa O2 at 20–1400 °C, as also in Ar/5% H2 (pH2O/pH2=0.01) at 850–1000 °C. Oxygen stoichiometry and electrical conductivity of the solid solutions with a=0.0–1.0 are investigated. Increasing Ca contents decrease the stability of the oxides in respect to the thermal dissociation of oxygen. All compounds are p-type semiconductors in the temperature range 20–1000 °C at oxygen partial pressures of 10−15 to 0.21×105 Pa. A maximum conductivity of about 30 S/cm in air at 1000 °C is observed for the composition with a=0.6 corresponding to a ratio of Cr3+/Cr4+=1 at an oxygen stoichiometry near 3.0, and oxidation states of La, Ca, Ti, and O ions of 3+, 2+, 4+, and 2−, respectively.  相似文献   

9.
Ferrites have been studied for several years due to their wide use as magnetic materials for telecommunications, audio and video, power transformers and many other applications.

Equimolar mixtures of Fe2O3 and TiO2 were fired in a muffle furnace at 1200 °C for 4 h. Mixed samples were prepared by replacing TiO2 with calculated amounts of CuO (x = 0.2, 0.4, 0.6, 0.8 and 1 mol). The synthesized samples were characterized with X-ray diffraction and their magnetic properties were measured using vibrating-sample magnetometer. The microstructure of the sample was examined using reflected light microscope and scanning electron microscope. The formation of Fe2TiO5, Fe5CuO8, Cu2TiO3 and CuFeO2 phases were detected whereas their magnetic properties increased with increasing the added mole ratio of Cu2+ ions. The isothermal reduction kinetics of synthesized nanocrystallites Ti–Cu mixed ferrite compacts were studied at 500 °C using hydrogen gas. It was found that the reduction rate and the reduction extent increased with increasing the extent of Cu2+ (0.2–1) whereas the maximum reduction extent (100%) was detected for pure Cu ferrite (Cu2+) while the minimum reduction extent (12%) was detected for pure iron titanate (Cu2+ = 0). The magnetic properties showed a drastic improvement upon reduction with hydrogen gas.  相似文献   


10.
Compound ceramic coatings prepared on Ti–6Al–4V alloy by pulsed bi-polar micro-plasma oxidation (MPO) in NaAlO2 solution were oxidized under different temperature in air. The phase composition and surface morphology of the coatings before and after oxidation were investigated by X-ray diffractometry and scanning electron microscopy, respectively. Meantime, the weight gains and the high temperature oxidation characteristics of the coated samples were investigated. The results show that the coatings prepared by MPO were composed of a large amount of Al2TiO5 and a little -Al2O3 and rutile TiO2. And the oxidation process of the coated samples included the decomposition of the Al2TiO5 in the coating, the oxidation of the substrate and the changes of the coating structure. After high temperature oxidation, the increase of -Al2O3 in the coating was due to the decomposition of Al2TiO5, whereas the increase of rutile TiO2 in the coating was attributable to both the decomposition of Al2TiO5 and the oxidation of the Ti substrate. The main crystalline of the coatings became rutile TiO2 after the oxidation of 1000 °C for 1 h. The decomposition of Al2TiO5 in the coating occurred at 900 and 1000 °C, and its half decomposition time was less than 1 h at 1000 °C. Increasing oxidation temperature or extending oxidation time, the weight gains of coated samples was increased to different extent. However, the weigh gains of the coated samples was much lower than that of the substrate, so the ceramic coatings improved the oxidation resistance of Ti alloy greatly under the experimental conditions.  相似文献   

11.
利用光学显微镜、X射线衍射仪和扫描电镜等方法研究了固溶时效处理前后Mg-4Sm-3Gd-0.5Zr合金(质量分数,%)的显微组织、物相组成和腐蚀形貌,并在质量分数为3.5%的NaCl溶液中进行了静态失重和电化学测试。结果表明,铸态Mg-4Sm-3Gd-0.5Zr合金由α-Mg基体和沿晶界分布的粗大网状共晶相Mg41Sm5和Mg5Gd组成,固溶时效处理并没有改变共晶相的种类,但网状共晶组织消失,并且晶内有大量细小弥散的第二相析出,晶界更加清晰。试验合金采用525 ℃×8 h固溶+225 ℃×8 h时效处理后,腐蚀速率从0.185 mg·cm-2·h-1降低至到0.116 mg·cm-2·h-1,自腐蚀电流密度从1.599×10-4A·cm-2降低到0.924×10-4 A·cm-2,耐蚀性能明显提高。  相似文献   

12.
Isothermal hydrogen absorption properties of the ball milled mixture of 3Mg(NH2)2 and 8LiH after dehydrogenation at 200 °C under high vacuum were investigated at two different temperatures of 150 and 200 °C. The pressure–composition isotherm (PCT) curve at 200 °C revealed a two-plateaus-like behavior, while the PCT curve at 150 °C showed a single-plateau-like behavior. The hydrogenated phases were composed of LiH and Mg(NH2)2 under 9 MPa at 200 °C, while those were observed as mixed phases of LiH and LiNH2 at 150 °C without any trace of Mg(NH2)2 in XRD measurements. These results indicate that there are two-step hydrogenation processes corresponding to high and low pressures at 200 °C, but the kinetics at 150 °C is too slow to proceed with the second hydrogenating step at high pressure region.  相似文献   

13.
Lithium lanthanoid silicate, a high temperature lithium ion conducting solid electrolyte, synthesized by sol–gel method, has been characterized by TGA/DTA, XRD, FTIR and SEM. Conductivity was found to be 0.847 × 10−6 Ω−1 cm−1 at 750 °C and activation energy was 0.5 eV.  相似文献   

14.
The effects of Cl-, Cu2+ and Fe3+ ions and their combinations on the corrosion behaviour of aluminium alloy 6063 (AA6063) in ethylene glycol and water solutions at 50 °C were investigated by electrochemical and immersion methods. Cl - resulted in pitting corrosion of the alloy. In the Cl--free solutions, Fe3+ was prone to accelerate uniform corrosion, while Cu2+ tended to accelerate pitting corrosion. Severe pitting corrosion of AA6063 was observed in the cases of Cl- combined with Cu2+ or Fe3+, especially in the case of Cl- combined with Cu2+ and Fe3+ ions.  相似文献   

15.
In this study we present the results on complex structural changes of the Co70Fe5Si10B15 amorphous alloy induced during heating in the temperature range between 20 and 1000 °C. The structural and phase transformation changes were correlated with DTA, XRD and SEM properties. It is shown that initial Co70Fe5Si10B15 alloy during heating undergoes complex crystallochemical changes. In the range between ambient temperature and near 400 °C, investigated alloy retains the solid-state amorphous properties. Prolonged heating induces complete transformation to crystalline solid state. The solid–solid amorphous to crystalline state transformation process is completed at 500 °C, when two nanocrystalline phase alloy systems are formed. Prolonged thermal treatment between 600 and 1000 °C, influenced further elemental segregation and phase transition. At 1000 °C, the composite material consisting of two FCC cobalt-rich alloys and a hexagonal unidentified alloy are formed.  相似文献   

16.
Phase equilibria in the system Si–Ti–U were established at 1000 °C by optical microscopy, EMPA and X-ray diffraction. Two ternary compounds were observed and were characterised by X-ray powder data refinement: (1) stoichiometric U2Ti3Si4 (U2Mo3Si4-type) with a small homogeneity region of about 3 at.% exchange U/Ti and (2) U2−xTi3+xSi4 (Zr5Si4-type) extending at 1000 °C for 0.7<x<1.3. Mutual solubility of U-silicides and Ti-silicides was found to be below about 1 at.%. The Ti,U-rich part of the diagram was also investigated at 850 °C establishing the tie-lines to the low temperature compounds U2Ti and U3Si. U2Ti3Si4 is weakly paramagnetic following a Curie–Weiss law above 50 K with μeff.=2.67 μB/U, ΘP=−150 K and χ0=1.45×10−3 emu/mol (18.2×10−9 m3/mol).  相似文献   

17.
The enhancement of the wettability and solder joint reliability at the Sn–9Zn–0.5Ag solder alloy–Cu interface by Ag precoating has been investigated. The wettability of the Sn–9Zn–0.5Ag solder alloy–Cu interface has been improved by Ag precoating. The adhesion strength of the solder alloy–Ag precoated Cu interface increases from 4.11±0.56 to 6.92±0.85 MPa as dipped at 250 °C for 10 s. When the dipping time is prolonged from 10 to 30 s, the interfacial adhesion strength increases from 6.92±0.85 to 13.62±0.73 MPa. The interfacial adhesion strength is enhanced by the rod-like Cu–Zn intermetallic compound (IMC) formed close to the interface. The diffusion coefficients of Sn and Zn in the IMC layer are determined as 5.76×10−10 and 9.50×10−11 cm2/s at the Sn–9Zn–0.5Ag–Cu and Sn–9Zn–0.5Ag–Ag precoated Cu interfaces, respectively.  相似文献   

18.
The systematic modification of a nickel–titanium-alloy by annealing in a complex gas atmosphere was investigated. A mixture of HCl and H2O in inert argon was chosen. The reaction kinetics was investigated at 600 °C, 700 °C and 800 °C. The reaction kinetics displayed a significant dependence on the temperature. It was monitored by means of a thermogravimetric balance that showed a quasi-parabolic scale growth at 600 °C, a paralinear or so called Tedmon kinetic at 700 °C with a distinct weight maximum after about 35 h, and finally a linear evaporation kinetic at 800 °C. This behaviour is attributed to the concurrent reactions of oxidation, chloridation and evaporation of corrosion products. The kinetics of these reactions is different for the two alloying elements and with respect to the equiatomic composition they are coupled to each other. Cross sections prove that a stochiometric titanium depletion is achieved leading to the formation of a Ni3Ti layer (d = 50 μm) which is in turn covered by a pure titanium oxide layer (d = 40 μm). The applicability of this technique for tailored surfaces with a high degree of biocompatibility is discussed.  相似文献   

19.
20.
Nano-crystalline SrAl2O4 with spinel structure was successfully prepared at 700 °C using amorphous SrAl2(diethylenetriaminepentaacetic acid (DTPA)1.6)(H2O)4 as precursor. The precursor was synthesized by a simple inorganic reaction and decomposed into SrAl2O4 at temperatures above 500 °C, which was proved by DTA–TGA and X-ray photoelectron spectroscopy (XPS) analysis. X-ray diffraction (XRD) results illustrated that a crystalline SrAl2O4 phase can form at 700 °C, which is about 600 °C lower than that used in the traditional method. The crystalline SrAl2O4 prepared at 900 °C for 2 h had a crystal size of about 28 nm and a grain size of about 80 nm, and its BET surface area can reach 28.056 m2/g. Calcination temperature and time had a weak effect on crystal size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号