首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
利用蒙脱土(MMT)特殊的片层结构,采用挤出工艺、熔融插层法制备了乙烯醋酸乙烯脂/蒙脱土(EVA/MMT)和乙烯醋酸乙烯脂/有机蒙脱土(EVA/OMMT)纳米复合材料,用锥形量热仪测试并分析了材料的燃烧性能。结果表明,添加OMMT的复合材料具有阻燃作用;复合材料中蒙脱土片层的(横、纵)取向影响材料的阻燃性;横向取向的EVA/OMMT复合材料有更低的热释放速率和质量损失速率,具有较好的阻燃性。通过扫描电镜(SEM)表征不同取向材料燃烧后炭渣的形貌,表明形成的炭层也为横、纵取向,解释了插层复合材料的横、纵取向对材料阻燃性的影响。  相似文献   

2.
根据蒙脱土(MMT)特殊的片层结构,采用熔融插层法制备了HIPS/MMT及HIPS/OMMT复合材料,并用锥形量热仪对材料的燃烧性能进行测试。结果表明,材料中蒙脱土片层的取向影响材料的阻燃性;与竖直取向的HIPS/OMMT复合材料相比,水平取向的HIPS/OMMT复合材料有更低的热释放速率和质量损失速率,具有较高的阻燃性。用扫描电镜表征了不同取向材料燃烧后炭层的形貌,表明形成的炭层也具有横、竖取向。此现象解释了插层复合材料的取向影响材料的阻燃性,为聚合物/层状硅酸盐纳米复合材料阻燃机理的研究提供了依据。  相似文献   

3.
为了进一步提高聚丙烯材料的阻燃性能,将一种新型大分子三嗪氰系成炭剂与包裹聚磷酸铵复配,通过熔融共混法制备膨胀阻燃聚丙烯复合材料,并研究了有机改性蒙脱土对此阻燃体系的热稳定性以及阻燃性能的影响。适当加入有机改性蒙脱土有利于提高材料的阻燃性能和热性能。在保持添加剂总质量分数25%不变的情况下,添加2%有机改性蒙脱土时,阻燃聚丙烯材料的极限氧指数上升到31.5,相比未添加样品,材料的阻燃性能有了明显的提高,但过量的有机改性蒙脱土反而会降低材料的阻燃性能。耐水性实验结果表明,此种膨胀阻燃聚丙烯复合材料具有优良的耐水性能。  相似文献   

4.
氧化锌与膨胀型阻燃剂对聚丙烯的协效阻燃   总被引:1,自引:0,他引:1  
采用磷酸、季戊四醇和三聚氰胺为原料合成了一种新型膨胀型阻燃剂(IFR)。并以IFR为阻燃剂,氧化锌(ZnO)为协效阻燃剂,聚丙烯(PP)为基体树脂制备了膨胀型阻燃PP复合材料,重点研究ZnO与IFR之间的协效阻燃作用。采用氧指数测定仪、UL-94测定仪和锥形量热仪等手段研究阻燃PP复合材料的燃烧性能,用动态傅里叶变换红外光谱(FTIR)研究阻燃PP复合材料在不同温度下凝聚相的结构变化,初步揭示其热降解特性。实验结果表明:ZnO与IFR之间存在明显的协效阻燃效果;复合材料在240~330℃时,结构变化最剧烈;ZnO添加质量分数为1.6%时,炭层完整性最好,热释放速率峰值最低,降低幅度可达80%,UL-94为V-0级;ZnO添加质量分数为3.2%时,氧指数(LOI)最大为25.6%,UL-94为V-0级。  相似文献   

5.
通过挤出注塑的方法制备了尼龙6(PA6)/蒙脱土插层复合材料,并考察了材料的阻燃性能和力学性能。结果表明,红磷加入PA6/OMMT复合材料后,无熔滴现象并且阻燃级别达到FH-1;当有机蒙脱土用量为质量分数5%~7%时,该复合材料的综合性能较好。  相似文献   

6.
以天然蒙脱土(MMT)和十六烷基三甲基溴化铵(CTAB)改性的有机蒙脱土(OMMT)为原料,用具有阻燃性质的三聚氰胺、双氰胺-甲醛树脂缩合物(MDFP)作为插层剂与蒙脱土层间的阳离子进行交换,优化反应条件(改性时间、温度及质量配比) ,制备出层间距不同的蒙脱土-氨基树脂纳米复合材料,用XRD、FT - IR对产物进行表征.结果表明, 三聚氰胺、双氰胺树脂缩合物已成功插层进入到两种蒙脱土层间.在50~70 ℃的水浴下加热,质量配料比小于10%,反应4 h的实验效果最好,有利于制备插层型或插层-剥离型蒙脱土-氨基树脂纳米复合材料.  相似文献   

7.
针对目前无机阻燃剂对Nylon6阻燃效果差的研究现状,考察了滑石粉、MCA、有机蒙脱土含量对Nylon6复合材料力学性能和阻燃性能的影响.研究结果表明:随着三种阻燃剂用量的增加,Nylon6拉伸强度都有不同程度的增加,其中添加MCA的拉伸强度增加最明显,从纯Nylon6的78.13 MPa增加到90.65 MPa,增加了16%;随着阻燃剂用量的增加,Nylon6冲击强度和熔融指数都有下降;当有机蒙脱土含量为10%时,Nylon6复合材料的氧指数由20.71升高到27.89,增加了35%,继续增加有机蒙脱土用量,氧指数增加不明显.  相似文献   

8.
本文采用原位乳液聚合方法制备了聚丙烯酸丁酯一有机蒙脱土/聚(甲基丙烯酸甲酯-衣康酸)(PBA—OMMT/P(MMA-1TA)纳米复合材料。利用X-射线衍射仪(XRD)、差示扫描量热仪(DSC)、傅立叶变换红外光谱(FT-IR)和热重分析(TGA)对复合材料进行了表征。结果表明:单体已插层进人有机蒙脱土层间发生聚合反应,使有机蒙脱土片层间距由原来的0.59nm增加到0.88nm以上,且有机蒙脱土的加入能够显著提高纳米复合材料的玻璃化转变温度(Tg)和热稳定性能。  相似文献   

9.
采用熔融共混的方法,将MMT和聚磷酸铵基阻燃剂添加到PHBV/PBAT复合材料中,研究复合阻燃材料的力学性能、流变性能以及燃烧性能。极限氧指数和垂直燃烧结果表明,聚磷酸铵基阻燃剂的添加提高了复合材料的极限氧指数,MMT的加入使得极限氧指数进一步提高,当MMT的质量分数为1%时通过了UL-94垂直燃烧V-0级别测试。结合流变性能测试与力学性能测试表明,聚磷酸铵基阻燃剂恶化了复合材料的力学性能,而MMT提高了粉体在基体材料中的分散性能,提高了复合阻燃材料的力学性能。锥形量热测试表明,MMT的加入明显降低了复合材料的热释放速率以及产烟量。  相似文献   

10.
采用熔融插层法制备乙烯-醋酸乙烯酯/有机蒙脱土纳米复合材料(EVA/OM-MT),并研究其阻燃性能。结果表明,EVA大分子能有效地插入有机蒙脱土(OMMT)片层间,形成插层型纳米复合材料,而不能有效插入钠基蒙脱土(MMT)片层间;OMMT可以明显地改善EVA/OMMT的阻燃性能,随着OMMT用量的增大,EVA/OMMT的热释放速、峰值热释放速率、总热释放先明显降低然后趋于稳定。  相似文献   

11.
选用可膨胀石墨(EG)和聚磷酸铵(APP)为阻燃剂,过渡金属氧化物(Cu2O、Fe2O3、Ni2O3、Co2O3)为协效剂,APP、EG和过渡金属氧化物的质量比固定为15: 13: 2,总添加量为30 php,制备阻燃硬质聚氨酯泡沫塑料(RPUF)。使用极限氧指数(LOI)、垂直燃烧(UL-94)和锥形量热(Cone)测试,研究不同种类的过渡金属氧化物对RPUF/APP/EG泡沫阻燃性能和烟气释放的影响。LOI和UL-94垂直燃烧结果表明,加入相同添加量(2 php)的过渡金属氧化物不同程度地改变了RPUF/APP/EG的阻燃性能,其中只有Cu2O、APP和EG复配能进一步提高RPUF/APP/EG的LOI至25.5%,表现出协同阻燃效果,而其他过渡金属氧化物的加入都或多或少地降低了材料的LOI值。Cone测试结果表明,RPUF/15APP/13EG/2Cu2O阻燃泡沫的总热释放量和烟气产生量与RPUF/15APP/15EG相比均得到明显降低,降幅分别为22%和20%。  相似文献   

12.
An aliphatic epoxy monomer "polypropyleneglycol-diglycidylether (PPGDGE, YF878)" is loaded in the epoxy resins (EP) to evaluate the influence of epoxy structure on the blowing-out effect, which is caused by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and octaphenyl silsesquioxane (OPS). The flame retarding properties of these EP composites were tested using the LOI and UL-94 procedures. The pyrolytic gases produced and the thermal stability of the EP composites with different flame retardants were detected by TGA-FTIR in air. The negative effect of YF878 was detected from the TTI, HRR, and p-HRR results after the cone calorimeter test. The char produced by the EP composites after the cone calorimeter test was investigated by FTIR. It is proposed that the aliphatic chain of the YF878 is easy to break down and produce combustible gases, so it does not easily form a crosslinked structure in the condensed phase. These results are very helpful for investigation of the conditions under which the blowing-out effect in epoxy resins can be caused by synergy of phosphorous and silicon.  相似文献   

13.
ABS/PA6合金的无卤膨胀性阻燃研究   总被引:6,自引:3,他引:3  
以聚磷酸铵(APP)为酸源, 利用ABS/PA6合金中PA6为炭源对ABS/PA6合金进行膨胀型阻燃研究,探讨了不同成炭协效剂与APP复配对合金阻燃性能的影响,这些成炭协效剂包括季戊四醇笼状磷酸酯(PEPA),热塑性酚醛树脂(TPPFR),环氧树脂(E-44)和分子筛4A. 结果表明,PA6具有较好的成炭作用, 当APP含量为25%时,阻燃合金体系的极限氧指数可达29,UL-94测定达V-1级别,APP含量为35%时,UL-94测定达V-0级别.而以5t%的季戊四醇笼状磷酸酯(PEPA)或环氧树脂(E-44)与20%APP复配, 或以3%分子筛4A与22%APP复配都可以大大提高体系的阻燃性能和高温下的残炭量, 使阻燃体系氧指数达到30以上, UL-94测定达V-0级别. SEM形貌分析显示体系燃烧表面都形成了膨胀、均匀、致密的炭层结构.  相似文献   

14.
Thermal and thermo-oxidative decomposition and decomposition kinetics of flame retardant high impact polystyrene (HIPS) with triphenyl phosphate (TPP) and novolac type epoxy resin (NE) were characterized using thermo-gravimetric experiment. And the flammability was determined by limited oxygen indices (LOI). The LOI results show that TPP and NE had a good synthetic effect on the flame retardancy of HIPS. Compared with pure HIPS, the LOI values of HIPS/NE and HIPS/TPP only increased by about 5%, and the LOI value of HIPS/TPP/NE reached 42.3%, nearly 23% above that of HIPS. All materials showed one main decomposition step, as radical HIPS scission predominated during anaerobic decomposition. TPP increased the activity energy effectively while NE affected the thermal-oxidative degradation more with the help of the char formation. With both TPP and NE, the materials could have a comparable good result of both thermal and thermal-oxidative degradation, which could contribute to their effect on the flame retardancy.  相似文献   

15.
以马来酸酐功能化的乙烯/辛烯共聚物(POE-g-MA)为弹性体,三聚氰胺氰尿酸盐(MCA)为阻燃剂,在SHJ-36双螺杆挤出机中制备了无卤阻燃增韧尼龙1313/POE/MCA复合材料.测定了无卤阻燃尼龙1313/POE/MCA复合材料的极限氧指数(LO I),用扫描电镜(SEM)观察了经锥形量热仪燃烧的该复合材料残炭的形貌.实验结果表明,当POE-g-MA,MCA的质量分数分别为15%和12%时,复合材料的LO I为32%,垂直燃烧通过UL94V-0级,缺口冲击强度是纯尼龙1313的5.5倍,实现了在不使用卤元素阻燃剂并且保证尼龙1313/POE/MCA复合材料力学性能的前提下,大幅度提高该材料阻燃性能的要求.  相似文献   

16.
通过极限氧指数法(LOI)和垂直燃烧(UL-94)测试考察了一种无卤阻燃乙烯-醋酸乙烯酯共聚物(EVA)的阻燃性能;利用热重分析法(TG)研究了纯EVA及阻燃EVA在不同升温速率下的热稳定性及热分解动力学,并采用Kissinger及Flynn-Wall-Ozawa方法计算了纯EVA和阻燃EVA的热分解表观活化能。结果表明,添加40%复合膨胀阻燃剂的EVA复合材料,极限氧指数达到28.6%,UL-94测试达到V-0级,残炭量相对纯EVA明显提高;随着升温速率增大,EVA和阻燃EVA的起始失重温度和各阶段的失重峰温均向高温方向移动;二者在第一阶段的热分解活化能均低于第二阶段,阻燃剂的添加使EVA的最大失重速率明显降低,热分解表观活化能提高,增强了材料的热稳定性和阻燃性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号