首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
用提拉法生长了掺铬、钕的钆镓石榴石(Cr4+,Nd3+∶GGG)自调Q激光晶体。报道了室温下的吸收光谱和荧光光谱特性。分析了Cr离子浓度对光谱性质的影响。比较了Cr4+∶GGG,Nd3+∶GGG和(Cr4+,Nd3+)∶GGG晶体吸收光谱的关系。测量了(Cr4+,Nd3+)∶GGG晶体和Nd3+∶GGG晶体的荧光寿命,它们分别是33μs和250μs。实验表明,(Cr4+,Nd3+)∶GGG晶体是一种非常有潜力的自调Q激光晶体,可以实现大功率激光器的小型化和全固态化。  相似文献   

2.
掺钕钆镓石榴石(Nd3+: Gd3 Ga5 O12,简称Nd : GGG)激光晶体是固体热容激光器的首选工作物质.采用提拉法生长了Nd:GGG晶体,测试了晶体的吸收及荧光光谱,并利用J-O理论计算了晶体的吸收及发射截面、强度参数、辐射跃迁概率、荧光分支比、荧光寿命等光谱参数.吸收光谱测试及计算结果发现,Nd:GGG晶体的最强吸收峰位于808 nm附近,主峰808 nm的吸收截面积σabs=4.35×10-20cm2,吸收线宽FWHM为8 nm,并且吸收峰强度随掺杂离子浓度的增加而增加.荧光光谱测试及计算结果表明,晶体的最强荧光发射峰位于1 062 nm附近,是Nd3+的4F3/2-4I11/2能级跃迁产生的荧光发射.主发射峰1 062 nm辐射跃迁概率AJJ'=1 832.01 s-1,荧光分支比βJJ=45.07%,荧光寿命τ=250 μs,受激发射截面σ(λ)=21.58×10-20cm2,较大的荧光分支比和受激发射截面易实现4F3/2-4I11/2通道的激光运转.  相似文献   

3.
Cr4+,Nd3+:YAG自调Q激光透明陶瓷的光谱性质   总被引:5,自引:0,他引:5       下载免费PDF全文
以高纯α-Al2O3、Y2O3、Nd2O3和Cr2O3粉体为原料,CaO为电荷补偿剂,正硅酸乙酯(TEOS)为烧结助剂,采用固相反应法和真空烧结技术成功制备了高质量的Cr4 ,Nd3 :YAG透明陶瓷.研究了其在室温下的吸收光谱和发射光谱性质,O.1%Cr,1.0%Nd:YAG(Cr,Nd为摩尔分数,下同)透明陶瓷在808 nm处的吸收截面为4.27×10-20 cm2,1 064 nm处的发射截面和荧光寿命分别为1.52×10-20 cm2和206μs.由Cr4 ,Nd3 :YAG透明陶瓷的吸收和发射光谱计算出的吸收和发射截面,进一步估算了材料的激光性能参数,并对其激光性能进行理论预测.Cr,Nd:YAG透明陶瓷很可能是一种具有潜力的自调Q激光材料.  相似文献   

4.
采用熔盐法从K2 WO4助熔剂体系生长出尺寸为 4 5mm的Nd3 :Er3 :KY(WO4) 2 透明晶体。从晶体中切割出Ф3× 11 9mm的激光器件 ,测量了晶体的紫外 -近红外的吸收光谱 ,从吸收光谱图上可以看到 ,晶体存在着 974 88nm ;80 1 0 (798 12 ,80 3 95 )nm ;74 8 5 (75 3 5 ,74 3 4 9)nm ;6 5 3 6 1nm ;5 86 6 5nm ;5 18 6(5 4 5 0 3,5 2 1 32 ,4 89 35 )nm ;4 5 2 80nm ;4 0 7 81nm ;36 7 2 2 (377 2 4 ,36 6 4 ,35 8 0 2 )nm九个吸收峰带 ,对各个吸收峰带按照Er3 和Nd3 离子的能级跃迁进行了归属。同时采用Edinburgh InstrumentF92 0荧光光谱仪在室温下对晶体进行了荧光测试研究。研究结果表明 ,共掺Nd3 离子可以增强Er3 :KY(WO4) 2 对半导体激光器泵浦源 (80 0nm)的吸收。  相似文献   

5.
Y3Ga5O12:Cr3+激光晶体的发光特性   总被引:1,自引:0,他引:1  
文根旺  刘颂豪 《发光学报》1989,10(2):123-129
在10K—300K温度范围内测量了Cr3+:Y3Ga5O12晶体对应于2E→4A2与4T2→4A2跃迁谱峰的荧光寿命。得出2E、2T1与4T2态的辐射寿命分别为965.8μs、130.7μs与88.6μs。理论拟合的标准相对误差为2.85%。分析了荧光的热猝灭机理,导出了荧光寿命和辐射量子效率的温度依赖关系。  相似文献   

6.
采用顶部籽晶法从Na2WO4助熔剂体系生长出优质的Cr^3 :Al2(WO4)3晶体,测定了吸收和荧光光谱,结果表明:Cr^3 离子在晶体中有两个宽且强的吸收带和一个微弱的吸收线,两宽带中心波长分别为422和595nm,还有两个较弱的吸收峰,其荧光峰值分别为684和663nm。其荧光宽带和一个较弱的荧光线峰并存,宽带范围为650~820nm,峰值波长为740nm,荧光线峰波长约为680nm,其强度较强。计算了晶场强度和Racah参数,其Dq/B=2.42,晶体属于中阶场介质。研究表明,Cr^3 :Al2(WO4)3晶体具备可调谐激光晶体的基本光谱要求,且有良好的物化性能,可以实现宽频带可调谐激光输出。  相似文献   

7.
采用传统无压烧结工艺制备Cr:Al2O3透明多晶陶瓷.测定了其退火前后的吸收光谱和荧光光谱,发现在Al2O3六配位的八面体结构中,Cr4+的荧光发射也处在1100-1600 nm波段的红外区间,荧光发射峰位于1223 nm附近,类似Cr4+在四面体中的发光行为.同时由于氧化铝晶格常数较小,晶体场强较强,使Cr4+:Al2O3荧光发射峰相对其他Cr4+掺杂的晶体发生蓝移.由于Cr4+:Al2O3中Cr4+是位于八面体配位结构中,其荧光发射峰较窄,半高宽Δλ仅为37 nm.  相似文献   

8.
激光二极管抽运Cr4+:Nd3+:YAG自锁模自调Q激光器   总被引:1,自引:0,他引:1  
采用光纤耦合半导体激光抽运,实现了Cr4+:Nd3+:YAG自锁模自调Q激光器1.06üm激光输出.当抽运功率超过阈值2.83 W时,激光器便运转在调Q锁模状态,其锁模调制深度达到80%以上.当抽运功率最大为5.72 W时,平均输出功率为233 mW,相应调Q包络的单脉冲能量为16.5üJ,调Q包络的脉冲宽度大约为120 ns.调Q包络中锁模脉冲之间的间隔为2.8 ns,这与光子在谐振腔内的往返时间相一致,对应的重复率为357 MHz,锁模脉冲宽度估计为560 ps.利用双曲正割函数,考虑腔内光子数密度的空间高斯分布、增益介质的受激辐射寿命和饱和吸收体的激发态寿命对激光特性的影响,建立了描述Cr4+:Nd3+:YAG晶体自调Q自锁模动力学过程的速率方程组.数值求解该方程组,与实验结果符合较好.  相似文献   

9.
双掺(Tm3+,Tb3+)LiYF4激光器1.5 μm波长激光阈值分析   总被引:1,自引:0,他引:1  
胡晓  方达伟  洪治  洪方煜  邬良能 《光学学报》2002,22(12):426-1432
由速率方程推出了双掺(Tm^3 ,Tb^3 )离子准四能级系统的激光阈值解析式,讨论了Tm^3 和Tb^3 离子之间的相互作用。分析了1.5μm波长附近的激光阈值和Tm^3 、Tb^3 离子的掺杂原子数分数及晶体长度的关系。结果表明,对于对应Tm^3 离子^3H4→^3F4跃迁的约1.5μm波长的激光,激活离子Tm^3 的掺杂原子数分数过大时,交叉弛豫作用将使系统阈值迅速增加。Tb^3 离子的加入,一方面能抽空激光下能级,起到降低阈值的作用;另一方面亦减少了激光上能级的寿命,使阈值升高。故Tb^3 离子有最佳掺杂原子数分数。对于Tm原子数分数为y=0.01的Tm:LiYF4晶体,Tb^3 离子的最佳掺杂原子数分数为0.002左右,同时表明,激光阈值与晶体长度有关。最佳晶体长度与Tm^3 、Tb^3 离子的掺杂原子数分数以及晶体的衍射损耗和吸收损耗有关。  相似文献   

10.
采用顶部籽晶法从K2 Mo3 O10 B2 O3 助熔剂体系生长出尺寸为 30mm的Cr3 :GAB晶体 ,吸收谱测试表明 :Cr3 离子在晶体中有两个宽且强的吸收带及一个微弱的吸收线 ,两宽带中心的波长为 4 2 0和 5 95nm ,对应于 4A2 →4T1和4A2 →4T2 两个具有相同的总自旋能级之间的跃迁 ,在4A2 →4T2 吸收宽带的长波边缘处有个很小的吸收峰 ,其波长为 6 81nm ,对应于 4A2 → 2 E(R线 )的跃迁。荧光测试表明 :Cr3 :GdAl3 (BO3 ) 4(CGAB)晶体荧光宽带和一个较弱的荧光线峰并存 ,宽带范围为 6 5 0~ 85 0nm ,峰值波长为 72 3nm ,对应于4T2 → 2 E ,4A2 的联合能级跃迁 ,荧光线峰波长约为 70 0nm ,其强度较弱。计算了晶场强度和Racah参数 ,其中Dq/B =2 371,晶体属于中阶场介质。研究表明 ,CGAB晶体具备可调谐激光晶体的基本光谱要求 ,且有良好的物化性能 ,可以实现宽频带可调谐激光输出。它又具有较大的倍频系数 ,有望实现 35 0nm附近紫外的自倍频激光输出。  相似文献   

11.
By means of both the theory for pressure-induced shifts (PS) of energy spectra and the theory for shifts of energy spectra due to electron-phonon interaction (EPI), at 300 K, the `pure electronic' contributions and the contributions from EPI to R1 line, R2 line, and U band of GGG:Cr3+ as well as their PS have been calculated, respectively. The total calculated results are in good agreement with all the experimental data. Their physical origins have been explained. It is found that the mixing-degree of |t22(3T1)e 4T2> and |t232E> base-wavefunctions in the wavefunctions of R1 level of GGG:Cr3+ is considerable under normal pressure, and the mixing-degree rapidly decreases with increasing pressure. The change of the mixing-degree with pressure plays a key role for PS of R1 line or R2 line. At 300 K, both the temperature-independent contribution to R1 line (or R2 line or U band) from EPI and the temperature-dependent one are important. The remarkable difference between pressure-dependent behaviors of PS of R1 lines of GGG:Cr3+ and GSGG:Cr3+ results from the differences of their microscopic properties. The features of emission spectra of GGG:Cr3+ at various pressures have satisfactorily been explained.  相似文献   

12.
J. P. Shen  C. F. Ding 《Laser Physics》2012,22(11):1659-1663
A compact, diode-pumped passively Q-switched Nd3+:Gd3Ga5O12 (Nd:GGG) laser with Cr4+:YAG saturable absorber has been successfully demonstrated. Stable Q-switched pulses with pulse energy of 100 ??J and high peak power of 14 kW have been obtained. The pulse width was as short as 7 ns with low repetition rate of 10 kHz. The dependence of pulse width, pulse repetition rate, pulse energy and pulse peak power on pump power have been measured respectively. Experimental results reveal that the Nd:GGG crystal with Cr4+:YAG saturable absorber is suitable for narrow pulse width and high power passively Q-switched lasers.  相似文献   

13.
氟磷酸锶晶体Cr4+:YAG被动调Q激光特性研究   总被引:1,自引:0,他引:1  
采用氙灯泵浦,实现了掺钕氟磷酸锶晶体以Cr^4+:YAG作为被动调Q元件的1.059μm激光运转,测量了Cr^4+:YAG 同小爱过率及不同泵浦能量上激光单脉冲的输出能量、脉冲宽度、重复率,给出了Nd:S-FAP晶体Cr^4+:YAG调Q工作原理的方程组,数值求解该方程组得的理论结果与实验值相符。  相似文献   

14.
In this paper we report on the optical properties of triply Cr3+, Er3+, and RE3+ (RE=Tm, Ho, Eu) doped Gd3Ga5O12 crystals that were grown by the Czochralski method. Optical absorption, near-infrared (NIR), and mid-infrared (mid-IR) fluorescence spectra were characterized for the fabricated crystals and corresponding luminescence decay measurements under 654 nm excitation were also carried out. Based on the analysis of energy transfer process between Er and RE (RE=Tm, Ho, Eu) ions, the energy transfer efficiency (ETE) values were evaluated, correspondingly. From the spectral data of all the studied crystals, it is observed that the co-doped Cr3+ ion highly increases the absorption pump power and the three kinds of co-doped RE3+ ions depopulate the Er:4I13/2 energy level effectively. The spectral analysis shows that titled rare earth doped crystals are promising materials for ~3.0 μm mid-IR laser applications and among them Cr,Er,Eu:GGG is relatively more suitable due to its excellent optical properties compared with others.  相似文献   

15.
16.
17.
We report the laser performance of a low-propagation-loss neodymium-doped Gd(3)Ga(5)O(12) (Nd:GGG) waveguide fabricated by pulsed-laser deposition. An 8- mum -thick crystalline Nd:GGG film grown upon an undoped Y(3)Al(5)O(12) substrate lases at 1.060 and 1.062 microm when pumped by a Ti:sapphire laser operating at 740 or 808nm.Using a 2.2% output coupler, we observed a 1060-nm laser threshold of 4mW and a slope efficiency of 20%. Laser action was also achieved, for what we believe is the first time in Nd:GGG, on the quasi-three-level 937-nm transition. With a 2% output coupler at this wavelength a laser threshold of 17mW and a 20% slope efficiency were obtained. This demonstration of low propagation loss combined with the fact that these waveguides have a very high numerical aperture (0.75) makes pulsed-laser-deposited thin films attractive for high-power diode-pumped devices.  相似文献   

18.
Physics of the Solid State - Using experimental second-rank parameters of the spin Hamiltonian of the rhombic centers Gd3+ and Eu2+ in three garnets and the superposition approximation...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号