共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Late Neoproterozoic post-collisional igneous suites, calc-alkaline (CA) and alkaline–peralkaline (Alk), widely occur in the northernmost part of the Arabian–Nubian Shield. In Sinai (Egypt) and southern Israel they occupy up to 80% of the exposed basement. Recently published U–Pb zircon geochronology indicates a prolonged and partially overlapping CA and Alk magmatism at 635–590 Ma and 608–580 Ma, respectively. Nevertheless in each particular locality CA granitoids always preceded Alk plutons. CA and Alk igneous rocks have distinct chemical compositions, but felsic and mafic rocks in general and granitoids from the two suites in particular cannot be distinguished by their Nd, Sr and O isotope ratios. Both suites are characterized by positive εNd(T) values, from + 1.5 to + 6.0 (150 samples, 28 of them are new analyses), but predominance of juvenile crust in the region prevents unambiguous petrogenetic interpretation of the isotope data. Comparison of geochemical traits of felsic and mafic rocks in each suite suggests a significant contribution of mantle-derived components to the silicic magmas. Model calculation shows that the alkaline granite magma could have been produced by partial (~ 20%) melting of rocks corresponding to K-rich basalts. Material balance further suggests that granodiorite and quartz monzonite magmas of the CA suite could form by mixing of the granite and gabbro end-members at proportions of 85/15. In the Alk suite, alkali feldspar and peralkaline granites have evolved mainly by fractional crystallization of feldspars and a small amount of mafic minerals from a parental syenogranite melt. Thus the protracted, 20 m.y. long, contemporaneous CA and Alk magmatism in the northern ANS requires concurrent tapping of two distinct mantle sources. Coeval emplacement of CA and Alk intrusive suites was described in a number of regions throughout the world. 相似文献
2.
Post-collisional alkaline magmatism (∼610–580 Ma) is widely distributed in the northern part of the Neoproterozoic Arabian-Nubian Shield (ANS), i.e. the northern part of the Egyptian Eastern Desert and Sinai. Alkaline rocks of G. Tarbush constitute the western limb of the Katharina ring complex (∼593 ± 16 Ma) in southern Sinai. This suite commenced with the extrusion of peralkaline volcanics and quartz syenite subvolcanics intruded by syenogranite and alkali feldspar granite. The mineralogy and geochemistry of these rocks indicate an alkaline/peralkaline within-plate affinity. Quartz syenite is relatively enriched in TiO2, Fe2O3, MgO, CaO, Sr, Ba and depleted in SiO2, Nb, Y, and Rb. The G. Tarbush alkaline suite most likely evolved via fractionation of mainly feldspar and minor mafic phases (hornblende, aegirine) from a common quartz syenite parental magma, which formed via partial melting of middle crustal rocks of ANS juvenile crust. Mantle melts could have provided the heat required for the middle crustal melting. The upper mantle melting was likely promoted by erosional decompression subsequent to lithospheric delamination and crustal uplift during the late-collisional stage of the ANS. Such an explanation could explain the absence or scarce occurrence of mafic and intermediate lithologies in the abundant late- to post-collisional calc-alkaline and alkaline suites in the northern ANS. Moreover, erosion related to crustal uplift during the late-collision stage could account for the lack or infrequent occurrence of older lithologies, i.e. island arc metavolcanics and marginal basin ophiolites, from the northern part of the ANS. 相似文献
3.
Mahmoud I. Sherif Mohamed F. Ghoneim Mohamed Th. S. Heikal Bothina T. El Dosuky 《Mineralogy and Petrology》2013,107(5):765-783
Precambrian granites of the Sharm El-Sheikh area in south Sinai, Egypt belong to collisional and post-collisional Magmatism (610–580 Ma). The granites are widely distributed in the northern part of the Neoproterozoic Arabian-Nubian Shield. South Sinai includes important components of successive multiple stages of upper crust granitic rocks. The earliest stages include monzogranite and syenogranites while the later stages produced alkali feldspar granites and riebeckite-bearing granites. Numerous felsic, mafic dikes and quartz veins traverse the study granites. Petrographically, the granitic rocks consist mainly of perthite, plagioclase, quartz, biotite and riebeckite. Analysis results portray monzogranites displaying calc-alkaline characteristics and emplaced in island-arc tectonic settings, whereas the syenogranites, alkali-feldspar granites and the riebeckite bearing-granites exhibit an alkaline nature and are enriched in HFSEs similar to granites within an extensional regime. Multi-element variation diagrams and geochemical characteristics reinforce a post-collision tectonic setting. REEs geochemical modeling reveals that the rocks were generated as a result of partial melting and fractionation of lower crust basaltic magma giving rise to A1 and A2 subtype granites. They were subsequently emplaced within an intraplate environment at the end of the Pan-African Orogeny. 相似文献
4.
Mikbi intrusion(MI) is a part of the Neoproterozoic Nubian Shield located along the NE-SW trending major fracture zones prevailing southern Eastern Desert of Egypt. In this study, we present for the first time detailed mineralogical and bulk-rock geochemical data to infer some constraints on the parental magma genesis and to understand the tectonic processes contributed to MI formation. Lithologically, it is composed of fresh peridotite, clinopyroxenite, hornblendite, anorthosite, gabbronorite, pyroxene amphibole gabbro, amphibole gabbro and diorite. All rocks have low Th/La ratios(mostly <0.2) and lack positive Zr and Th anomalies excluding significant crustal contamination. They show very low concentrations of Nb, Ta, Zr and Hf together with sub-chondritic ratios of Nb/Ta(2-15) and Zr/Hf(19-35),suggesting that their mantle source was depleted by earlier melting extraction event. The oxygen fugacity(logfO_2) estimated from diorite biotite is around the nickel-nickel oxide buffer(NNO) indicating crystallization from a relatively oxidized magma. Amphiboles in the studied mafic-ultramafic rocks indicate relative oxygen fugacity(i.e. ΔNNO; nickel-nickel oxide) of 0.28-3 and were in equilibrium mostly with 3.77-8.24 wt.% H_2 Omelt(i.e. water content in the melt), consistent with the typical values of subduction-related magmas. Moreover, pressure estimates(0.53-6.79 kbar) indicate polybaric crystallization and suggest that the magma chamber(s) was located at relatively shallow crustal levels. The enrichment in LILE(e.g., Cs, Ba, K and Sr) and the depletion in HFSE(e.g., Th and Nb) relative to primitive mantle are consistent with island arc signature. The olivine, pyroxene and amphibole compositions also reflect arc affinity. These inferences suggest that their primary magma was derived from partial melting of a mantle source that formerly metasomatized in a subduction zone setting. Clinopyroxene and bulkrock data are consistent with orogenic tholeiitic affinity. Consequently, the mineral and bulk-rock chemistry strongly indicate crystallization from hydrous tholeiitic magma. Moreover, their trace element patterns are subparallel indicating that the various rock types possibly result from differentiation of the same primary magma. These petrological, mineralogical and geochemical characteristics show that the MI is a typical Alaskan-type complex. 相似文献
5.
Alkaline rhyolitic and minor trachytic volcanics were erupted 580–530 Ma ago. They occur with their A-type intrusive equivalents in Sinai, southern Negev and southwestern Jordan. At Taba-Nuweiba district, these volcanics outcrop in three areas, namely, Wadi El-Mahash, Wadi Khileifiya and Gebel El-Homra. Mineralogically, they comprise alkali feldspars, iron-rich biotite and arfvedsonite together with rare ferro-eckermannite. Geochemically, the older rhyolitic volcanics are highly evolved, enriched in HFSE including REE and depleted in Ca, Mg, Sr and Eu. The rhyolitic rocks of Wadi El-Mahash and Gebel El-Homra are enriched in K2O content (5.3–10.1 wt.%) and depleted in Na2O content (0.08–2.97 wt.%), while the rhyolites of Wadi Khileifiya have normal contents of alkalis. Their REE patterns are uniform, parallel to subparallel, fractionated [(La/Yb)n = 5.4] and show prominent negative Eu-anomalies. They are classified as alkali rhyolites with minor comendites. The younger volcanics are classified as trachyandesite and quartz trachyte (56.6–62.9 wt.% SiO2). Both older and younger volcanics represent two separate magmatic suites. The overall mineralogical and chemical characteristics of these volcanics are consistent with within plate tectonic setting. It is suggested that partial melting of crustal rocks yielded the source magma. Lithospheric extension and crustal rupture occurred prior to the eruption of these volcanics. The rather thin continental crust (35 km) as well as the continental upheaval and extensive erosion that preceded their emplacement favoured pressure release and increasing mantle contribution. The volatiles of the upper mantle were important agents for heat transfer, and sufficient for the anatexis of the crustal rocks. A petrogenetic hypothesis is proposed for the genesis of the recorded potassic and ultrapotassic rhyolitic rocks through the action of dissolved volatiles and their accumulation in the uppermost part of the magma chamber. 相似文献
6.
In the late Precambrian history of the Wadi Kid area in the Sinai, Egypt, two deformation phases are clearly recognized. The first phase, D1 (pre-620 Ma), produced a steep regional foliation, axial planar to upright F1 folds, in rocks of a lower-greenschist grade. This compressional phase of deformation is interpreted in terms of subduction in an island-arc setting. The second phase, D1 (post-620 Ma), is mainly expressed by the widespread development of sub-horizontal mylonitic zones with a total thickness of 1.5 km. Shear sense indicators give a consistent regional transport direction to the northwest, with local indications of reversal to the southeast. This event is associated with regional LP/HT metamorphism, indicative of high thermal gradients. Because of the LP/HT metamorphism, the change in geochemical nature of the granitoids, and the orientation of the dykes, we interpret the mylonitic zones as low-angle normal shear zones related to core-complex development during an extensional event with the transport reversal being induced by doming. We postulate that orogenic collapse was responsible for the transition from the D1 compressional phase to the D1 extensional phase. 相似文献
7.
Sultan Yasser M. El-Shafei Mohamed K. Arnous Mohamed O. 《International Journal of Earth Sciences》2017,106(8):2817-2836
International Journal of Earth Sciences - A low-to medium-grade metamorphic belt of a volcano-sedimentary succession occurs in the eastern side of South Sinai as a part of the northernmost... 相似文献
8.
Combined fluid inclusion microthermometry and microanalysis by laser ablation inductively coupled plasma mass spectrometry
(LA-ICPMS) are used to constrain the hydrothermal processes forming a typical Climax-type porphyry Mo deposit. Molybdenum
mineralisation at Questa occurred in two superimposed hydrothermal stages, a magmatic-hydrothermal breccia and later stockwork
veining. In both stages, texturally earliest fluids were single-phase, of low salinity (~7 wt.% NaClequiv.) and intermediate-density. Upon decompression to ~300 bar, they boiled off a vapour phase, leaving behind a residual brine
(up to 45 wt.% NaClequiv) at temperatures of ~420°C. The highest average Mo concentrations in this hot brine were ~500 μg/g, exceeding the Mo content
of the intermediate-density input fluid by about an order of magnitude and reflecting pre-concentration of Mo by fluid phase
separation prior to MoS2 deposition from the brine. Molybdenum concentrations in brine inclusions, then, decrease down to 5 μg/g, recording Mo precipitation
in response to cooling of the saline liquid to ~360°C. Molybdenite precipitation from a dense, residual and probably sulphide-depleted
brine is proposed to explain the tabular shape of the ore body and the absence of Cu-Fe sulphides in contrast to the more
common Cu-Mo deposits related to porphyry stocks. Cesium and Rb concentrations in the single-phase fluids of the breccia range
from 2 to 8 and from 40 to 65 μg/g, respectively. In the stockwork veins, Cs and Rb concentrations are significantly higher
(45–90 and 110–230 μg/g, respectively). Because Cs and Rb are incompatible and hydrothermally non-reactive elements, the systematic
increase in their concentration requires two distinct pulses of fluid exsolution from a progressively more fractionated magma.
By contrast, major element and ore metal concentrations of these two fluid pulses remain essentially constant. Mass balance
calculations using fluid chemical data from LA-ICPMS suggest that at least 25 km3 of melt and 7 Gt of deep input fluid were necessary to provide the amount of Mo contained in the stockwork vein stage alone.
While the absolute amounts of fluid and melt are uncertain, the well-constrained element ratios in the fluids together with
empirical fluid/melt partition coefficients derived from the inclusion analyses suggest a high water content of the source
melt of ~10%. In line with other circumstantial evidence, these results suggest that initial fluid exsolution may have occurred
at a confining pressure exceeding 5 kbar. The source of the molybdenum-mineralising fluids probably was a particularly large
magma chamber that crystallised and fractionated in the lower crust or at mid-crustal level, well below the shallow intrusions
immediately underlying Questa and other porphyry molybdenum deposits.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
9.
Robert A. Ayuso Antonia Messina Benedetto De Vivo Selma Russo Laurel G. Woodruff John F. Sutter Harvey E. Belkin 《Contributions to Mineralogy and Petrology》1994,117(1):87-109
The Sila batholith is the largest granitic massif in the Calabria-Peloritan Arc of southern Italy, consisting of syn to post-tectonic, calc-alkaline and metaluminous tonalite to granodiorite, and post-tectonic, peraluminous and strongly peraluminous, two-mica±cordierite±Al silicate granodiorite to leucomonzogranite. Mineral 40Ar/39Ar thermochronologic analyses document Variscan emplacement and cooling of the intrusives (293–289 Ma). SiO2 content in the granitic rocks ranges from 57 to 77 wt%; cumulate gabbro enclaves have SiO2 as low as 42%. Variations in absolute abundances and ratios involving Hf, Ta, Th, Rb, and the REE, among others, identify genetically linked groups of granitic rocks in the batholith: (1) syn-tectonic biotite±amphibole-bearing tonalites to granodiorites, (2) post-tectonic two-mica±Al-silicate-bearing granodiorites to leucomonzogranites, and (3) post-tectonic biotite±hornblende tonalites to granodiorites. Chondrite-normalized REE patterns display variable values of Ce/Yb (up to 300) and generally small negative Eu anomalies. Degree of REE fractionation depends on whether the intrusives are syn- or post-tectonic, and on their mineralogy. High and variable values of Rb/Y (0.40–4.5), Th/Sm (0.1–3.6), Th/Ta (0–70), Ba/Nb (1–150), and Ba/Ta (50–2100), as well as low values of Nb/U (2–28) and La/Th (1–10) are consistent with a predominant and heterogeneous crustal contribution to the batholith. Whole rock 18O ranges from +8.2 to +11.7; the mafic cumulate enclaves have the lowest 18O values and the two-mica granites have the highest values. 18O values for biotite±honblende tonalitic and granodioritic rocks (9.1 to 10.8) overlap the values of the mafic enclaves and two-mica granodiorites and leucogranites (10.7 to 11.7). The initial Pb isotopic range of the granitic rocks (206Pb/204Pb 18.17–18.45, 207Pb/204Pb 15.58–15.77, 208Pb/204Pb 38.20–38.76) also indicates the predominance of a crustal source. Although the granitic groups cannot be uniquely distinguished on the basis of their Pb isotope compositions most of the post-tectonic tonalites to granodiorites as well as two-mica granites are somewhat less radiogenic than the syn-tetonic tonalites and granodiorites. Only a few of the mafic enclaves overlap the Pb isotope field of the granitic rocks and are consistent with a cogenetic origin. The Sila batholith was generated by mixing of material derived from at least two sources, mantle-derived and crustal, during the closing stages of plate collision and post-collision. The batholith ultimately owes its origin to the evolution of earlier, more mafic parental magmas, and to complex intractions of the fractionating mafic magmas with the crust. Hybrid rocks produced by mixing evolved primarily by crystal fractionation although a simple fractionation model cannot link all the granitic rocks, or explain the entire spectrum of compositions within each group of granites. Petrographic and geochemical features characterizing the Sila batholith have direct counterparts in all other granitic massifs in the Calabrian-Peloritan Arc. This implies that magmatic events in the Calabrian-Peloritan Arc produced a similar spectrum of granitic compositions and resulted in a distinctive type of granite magmatism consisting of coeval, mixed, strongly peraluminous and metaluminous granitic magmas. 相似文献
10.
Geochemical evolution of intraplate magmatism in the Paleo-Asian Ocean from the Late Neoproterozoic to the Early Cambrian 总被引:1,自引:0,他引:1
I. Yu. Safonova 《Petrology》2008,16(5):492-511
A group of oceanic islands and/or seamounts (hereafter, paleoseamounts) was produced by oceanic hot-spot magmatism in the Late Proterozoic-Early Cambrian in the southwestern margin of the Paleo-Asian Ocean. They were accreted to the Kuznetsk-Altai island arc in the Late Cambrian and were subsequently incorporated during the closing of the paleocean into the accretionary complexes of the western part of the Altai-Sayan area (southwestern Siberia, Russia). The major-and trace-element compositions and Sr and Nd isotopic systematics of pillow lavas and basalt flows from the Kurai (600 Ma) and Katun’ (550–530 Ma) paleoseamounts of Gorny Altai characterize the evolution of Hawaiian-type magmatism in the Paleo-Asian Ocean during that period. The obtained data show a significant change in lava composition between 600 and 550–530 Ma. The tholeiitic basalts of the Kurai Paleoseamount (600 Ma) from the southern part of Gorny Altai have lower incompatible element contents and higher 147Sm/144Nd values compared with the younger tholeiitic and alkali basalts of the Katun’ Paleoseamount (550–530 Ma), whose rocks are exposed in northern Gorny Altai. The trace-element compositions of the Katun’ lavas are similar to those of the Hawaiian tholeiites, and their 147Sm/144Nd ratios are lower than those of the Kurai basalts. It was suggested that the older Kurai Paleoseamount was formed above a thinner oceanic lithosphere, i.e., closer to a paleospreading axis compared with the younger Katun’ Paleoseamount. The observed temporal variations in the chemical and isotopic characteristics of lavas are probably related to differences in the degree of melting of the heterogeneous mantle owing to the different thickness of the oceanic lithosphere above which the Kurai and Katun’ paleoseamounts were formed. During the Ediacaran, a plume developed beneath the younger and, consequently, thinner lithosphere of the Paleo-Asian Ocean. The higher degree of melting in the mantle column resulted in a more considerable contribution from the refractory depleted material of the upper mantle. After 50–70 Ma, i.e., in the Early Cambrian, the plume affected a thicker lithosphere, its mantle column became shorter, and the degree of melting was lower. Owing to this, the basaltic melt was more contributed by incompatible element enriched less refractory material of the lower mantle. 相似文献
11.
Ezz El Din Abdel Hakim Khalaf 《Arabian Journal of Geosciences》2012,5(4):663-695
Nugara volcanics are one of the northernmost outcrops of the Arabian?CNubian Shield. Two distinct volcanic successions are found in the Nugara basin: (1) old volcanic sequence composed of voluminous medium- to high-K calc-alkaline lavas and minor alkali basalt and (2) young volcanic sequence composed of subordinate tholeiitic mafic lavas. Their eruptions were punctuated by occasional volcaniclastic deposits that generated fall, flow, or reworked suites compositionally identical to the lava flows. These volcanics are a part of a post-subduction and extensional-related magmatic event in Northeastern Desert of Egypt. The volcanic rocks of the Nugara basin are characterized by strong enrichment in LILE relative to HESF, high LILE/HFSE ratios, and depletions of Nb on MORB-normalized multi-element diagrams. The geochemical features of the volcanic rocks suggest that they experienced fractional crystallization, along with mixing processes. Crustal contributions to the magma sources may also have occurred during magmatic evolution. These processes have resulted in scattered major and trace element variations with respect to increasing silica contents. The model proposed for their origin involves contrasting ascent paths and differentiation histories through crustal columns with different thermal and density gradients. The geochemical features of the most mafic samples suggest that the volcanic rocks in the region were derived from a mainly lithospheric mantle source that had been heterogeneously metasomatized by previous subduction events during convergence between the East and West Gondwanaland. The volcanic activity in the region is best explained by the delamination of lithospheric mantle slices that were heterogeneously enriched by previous subduction-related processes. 相似文献
12.
Neoproterozoic granites of Sharm El-Sheikh area,Egypt: mineralogical and thermobarometric variations
Calc-alkaline and alkaline intrusions of the late Neoproterozic form essential part of the Arabian–Nubian Shield. They were formed during the collision between East- and West-Gondwana. Sharm El-Sheikh area, Sinai, includes wide compositional array of these intrusions that can be considered as a case study. Variations in both tectonic and thermobarometric condition for granitic intrusions are studied. Four mappable granitic types are recognized namely monzogranite, syenogranite, alkali feldspar granites, and riebeckite-bearing granites. The monzogranite and the syenogranite of the study area are mostly I-type, whereas the alkali feldspar granite and the riebeckite-bearing granite belong to A-type granitoid. The calc-alkaline intrusions were formed in compressional setting due to decompressional melting of mafic lower crust. Partial melting and anatexing of crustal rocks are suggested to explain the protolith of the alkaline intrusions. The transition from the calc-alkaline magma to the alkaline one occurred as a result of the tectonic transition from compression regime to tectonic relaxation (extension setting) during the last stage of the Pan-African Orogeny. The amphiboles of the studied granites are classified as calcic- and alkali-amphiboles. The calcic-amphiboles are ferro-edenite while the alkali-amphiboles are typically riebeckite. Both amphibole types are of magmatic nature. Coexisting amphiboles and plagioclases are used to estimate the physicochemical parameters of magma crystallization. The syenogranite underwent temperature and pressure of formation range of 520–730 °C, <3 kbar. The alkali feldspar granite records 450–830 °C, <4 kbar, while the riebeckite-bearing granite records the lowest temperature condition among all varieties and estimate formation at 350–650 °C, <4 kbar. 相似文献
13.
Salt tectonic along offshore North Sinai was studied using seismic reflection data. The study revealed and identified various types of salt tectonics and structures in the study area. The triggering mechanism of salt tectonics was attributed to the pressure regime initiated from overloading sediments on the Messinian evaporites. The sediment load of 3,000?m exceeds the critical load (more than 1,000?m) and hence creates a pressure zone. The salt-generated structures resulted from thin-skinned extension that is driven by gravity gliding of the overloading sediments above the Messinian evaporite boundary, which acts as a detachment layer. These structures comprise normal growth faults and keystone grabens, trending roughly perpendicular to the slope of the continental margin. Salt tectonics in the study area were also triggered by the deformation of the movement of evaporite layer that causes stretching and fragmentation of the evaporite layer. Moving salt layer took place laterally and vertically, causing lateral and vertical pressures inside the Pliocene sediments. These movements of sediments led to the formation of salt rollers, salt weld, salt diapirs, rollover structures, and fault blocks. The interpretation of seismic data illustrates that the evaporite layer was switched off between the famous reflector M at its top and another reflector N at its base. M reflector is present and can be traced across the whole study area, while the N reflector pinched out in some parts of the study area. 相似文献
14.
Harald Fritz David R. Dallmeyer Eckart Wallbrecher Jürgen Loizenbauer Georg Hoinkes Peter Neumayr Ali A. Khudeir 《Journal of African Earth Sciences》2002,34(3-4)
Regional cooling in the course of Neoproterozoic core complex exhumation in the Central Eastern Desert of Egypt is constraint by 40Ar/39Ar ages of hornblende and muscovite from Meatiq, Sibai and Hafafit domes. The data reveal highly diachronous cooling with hornblende ages clustering around 580 Ma in the Meatiq and the Hafafit, and 623 and 606 Ma in the Sibai. These 40Ar/39Ar ages are interpreted together with previously published structural and petrological data, radiometric ages obtained from Neoproterozoic plutons, and data on sediment dynamics from the intramontane Kareim molasse basin. Early-stage low velocity exhumation was triggered by magmatism initiated at 650 Ma in the Sibai and caused early deposition of molasses sediments within rim synforms. Rapid late stage exhumation was released by combined effect of strike-slip and normal faulting, exhumed Meatiq and Hafafit domes and continued until 580 Ma. We propose a new model that adopts core complex exhumation in oblique island arc collision-zones and includes transpression combined with lateral extrusion dynamics. In this model, continuous magma generation weakened the crust leading to facilitation of lateral extrusion tectonics. Since horizontal shortening is balanced by extension, no major crustal thickening and no increase of potential energy (gravitational collapse) is necessarily involved in the process of core complex formation. Core complexes were continuously but slowly exhumed without creating a significant mountain topography. 相似文献
15.
The Qinling Orogen is one of the main orogenic belts in Asia and is characterized by multi-stage orogenic processes and the development of voluminous magmatic intrusions. The results of zircon U–Pb dating indicate that granitoid magmatism in the Qinling Orogen mainly occurred in four distinct periods: the Neoproterozoic (979–711 Ma), Paleozoic (507–400 Ma), and Early (252–185 Ma) and Late (158–100 Ma) Mesozoic. The Neoproterozoic granitic magmatism in the Qinling Orogen is represented by strongly deformed S-type granites emplaced at 979–911 Ma, weakly deformed I-type granites at 894–815 Ma, and A-type granites at 759–711 Ma. They can be interpreted as the products of respectively syn-collisional, post-collisional and extensional setting, in response to the assembly and breakup of the Rodinia supercontinent. The Paleozoic magmatism can be temporally classified into three stages of 507–470 Ma, 460–422 Ma and ∼415–400 Ma. They were genetically related to the subduction of the Shangdan Ocean and subsequent collision of the southern North China Block and the South Qinling Belt. The 507–470 Ma magmatism is spatially and temporally related to ultrahigh-pressure metamorphism in the studied area. The 460–422 Ma magmatism with an extensive development in the North Qinling Belt is characterized by I-type granitoids and originated from the lower crust with the involvement of mantle-derived magma in a collisional setting. The magmatism with the formation age of ∼415–400 Ma only occurred in the middle part of the North Qinling Belt and is dominated by I-type granitoid intrusions, and probably formed in the late-stage of a collisional setting. Early Mesozoic magmatism in the study area occurred between 252 and 185 Ma, with the cluster in 225–200 Ma. It took place predominantly in the western part of the South Qinling Belt. The 250–240 Ma I-type granitoids are of small volume and show high Sr/Y ratios, and may have been formed in a continental arc setting related to subduction of the Mianlue Ocean between the South Qinling Belt and the South China Block. Voluminous late-stage (225–185 Ma) magmatism evolved from early I-type to later I-A-type granitoids associated with contemporaneous lamprophyres, representative of a transition from syn- to post-collisional setting in response to the collision between the North China and the South China blocks. Late Mesozoic (158–100 Ma) granitoids, located in the southern margin of the North China Block and the eastern part of the North Qinling Belt, are characterized by I-type, I- to A-type, and A-type granitoids that were emplaced in a post-orogenic or intraplate setting. The first three of the four periods of magmatism were associated with three important orogenic processes and the last one with intracontinental process. These suggest that the tectonic evolution of the Qinling Orogen is very complicated. 相似文献
16.
Abdou Abouelmagd Mohamed Sultan Neil C. Sturchio Farouk Soliman Mohamed Rashed Mohamed Ahmed Alan E. Kehew Adam Milewski Kyle Chouinard 《Quaternary Research》2014
Sixteen groundwater samples collected from production wells tapping Lower Cretaceous Nubian Sandstone and fractured basement aquifers in Sinai were analyzed for their stable isotopic compositions, dissolved noble gas concentrations (recharge temperatures), tritium activities, and 14C abundances. Results define two groups of samples: Group I has older ages, lower recharge temperatures, and depleted isotopic compositions (adjusted 14C model age: 24,000–31,000 yr BP; δ18O: − 9.59‰ to − 6.53‰; δ2H: − 72.9‰ to − 42.9‰; < 1 TU; and recharge T: 17.5–22.0°C) compared to Group II (adjusted 14C model age: 700–4700 yr BP; δ18O: − 5.89‰ to − 4.84‰; δ2H: − 34.5‰ to − 24.1‰; < 1 to 2.78 TU; and recharge T: 20.6–26.2°C). Group II samples have isotopic compositions similar to those of average modern rainfall, with larger d-excess values than Group I waters, and locally measurable tritium activity (up to 2.8 TU). These observations are consistent with (1) the Nubian Aquifer being largely recharged prior to and/or during the Last Glacial Maximum (represented by Group I), possibly through the intensification of paleowesterlies; and (2) continued sporadic recharge during the relatively dry and warmer interglacial period (represented by Group II) under conditions similar to those of the present. 相似文献
17.
《International Geology Review》2012,54(9):1098-1119
The Alaçam region of NW Turkey lies within the Alpine collision zone between the Sakarya continent and the Menderes platform. Four different tectonic zones of these two continents form imbricated nappe packages (including the Afyon zone), intruded by the Alaçam granite. Newly determined U-Pb zircon ages of this granite are 20.0 ± 1.4 and 20.3 ± 3.3 Ma, indicating early Miocene emplacement. Rb-Sr biotite ages of the granite are 20.01 ± 0.20 and 20.17 ± 0.20 Ma, suggesting fast cooling at a shallow crustal level. Geochemical characteristics show that the Alaçam granite is similar to numerous EW-trending plutons in NW Anatolia. Gneissic granites of the Afyon tectonic zone were intruded by the Miocene Alaçam granite and have been interpreted in earlier studies as sheared parts of the Alaçam granite, which formed along a crustal-scale detachment zone under an extensional regime. We determined a U-Pb zircon age of 314.9 ± 2.7 Ma for a gneissic granite sample of the Afyon zone, demonstrating that these rocks are unrelated to the Miocene Alaçam granite. The early Miocene granitic plutons bear post-collisional geochemical features and are interpreted as products of Alpine-type magmatism along the Izmir–Ankara suture zone in NW Turkey, and seem to have no genetic relation to the detachment zone. 相似文献
18.
The study area in the northwest Sinai represents one of the most significant regions in the Egyptian basement intensely invaded by post-orogenic calc-alkaline dyke swarms. Two post-orogenic dyke swarms have been recognized in NW Sinai namely: (1) mafic dykes of basalt, basaltic andesite and andesite composition and (2) felsic dykes of dacite, rhyodacite and rhyolite composition. These basaltic to rhyolitic dykes intruded contemporaneously and shortly after the intrusion of the post-orogenic leucogranite. The mafic and felsic dykes are enriched in incompatible elements, especially in the large ion lithophile elements (e.g. K, Rb, Ba) and depleted in high field strength elements with negative P, Ti and Nb anomalies. Major and trace element geochemistry indicates that investigated mafic and felsic magma types are not related via fractional crystallization. The protoliths of the mafic and felsic dykes appear to have evolved from different parental magmas. The incompatible trace element patterns favour a derivation of the mafic dykes from melting of a garnet peridotite source followed by fractional crystallization of olivine, clinopyroxene amphibole and zircon. The felsic dykes, on the other hand, could be generated by melting of garnet-free source modified subsequently by fractional crystallization of plagioclase, apatite and titanomagnetite. This implies variable source characteristics at the end of the Pan-African in the NW Sinai.The mafic and felsic dykes can be related to an intracontinental setting and that this was accompanied by a chemical evolution of the subcontinental lithosphere. Magma generation and ascent in the area was favoured by extensional movements, which is already known from other areas in NE Africa. 相似文献
19.
Jana Just Bernhard Schulz Helga de Wall Fred Jourdan Manoj K. Pandit 《Gondwana Research》2011,19(2):402-412
The in-situ “chemical” Th–U–Pb dating of monazite with the electron microprobe is used to unravel the Neoproterozoic tectono-thermal history of the “Erinpura Granite” terrane in the foreland of the Delhi Fold Belt (DFB) in the NW Indian craton. These granitoids are variably deformed and show effects of shearing activity. Monazites from the Erinpura granitoids recorded two main events; (1) protolith crystallization at 863 ± 23 Ma and (2) recrystallization and formation of new Th-poor monazite at 775 ± 26 Ma during shear overprint. Some components of the Erinpura granitoids, such as the Siyawa Granite and granites exposed near Sirohi town, show evidence of migmatization. This migmatization event is documented by anatexis and associated monazite crystallization at 779 ± 16 Ma. The age data indicate an overlap in timing between anatectic event and ductile shear deformation. The end of the tectono-thermal event in the Sirohi area is constrained by a 736 ± 6 Ma Ar–Ar muscovite age data from the ductile shear zone. 相似文献
20.
Ahmed El-Kammar Hassan Taha Abu-Zied Mohamed Galal Dina Osman 《Arabian Journal of Geosciences》2017,10(21):463
This work discusses the composition, radioactivity, and possible utilization of the kaolin resources in Sinai which are hosted in thick sandstone sequences belonging to the Carboniferous (Wadi Khaboba) and Early Cretaceous (Wadi Iseila and Abansakar) ages. The characterization of kaolin was done by microscopic and SEM examination, supported by XRD and ICP-MS analyses. The studied kaolin resources consist of kaolinite, as the main constituent, associated with subsidiary dickite and halloysite, and minor contribution of smectite and illite. The most dominant non-clay mineral is quartz, besides minor gypsum, dolomite, and hematite. Ferrugination dominates, in most cases, at the upper boundaries of the kaolin lenses, suggesting possible supergene activity. The high Al2O3/SiO2 ratio for the Cretaceous kaolin (0.54, in average) specifies its better grade relative to the Carboniferous kaolin (0.43, in average). The kaolin of the middle part of lens C in Wadi Iseila contains Si/Al molecular ratio of about unity, suggesting high-grade kaolin. The Carboniferous kaolin has enriched the radionuclides: U, Th, and Ra (at disequilibrium state due to leaching of eU relative to Ra) and the REE, relative to that of the Cretaceous age. The Carboniferous kaolin is characterized by a higher contribution of HREE (zircon signature), whereas LREE seems to be more influential for the Early Cretaceous kaolin (monazite signature). In spite of the very high CIA index (93 to 99), none of the analyzed kaolin deposits displays Ce abnormality. The high radioactivity of some Carboniferous kaolin can be a serious impediment for its utilization or its exportation. The kaolin of Sinai does not satisfy the international standards for paperwork industries and refractory manufacturing, but beneficiation may overcome this challenge. However, some lenses have high-grade kaolin with a low percentage of oxides of iron, magnesium, calcium, sodium, and potassium and a low radioactivity, hence nominated for the local refractory industry. The high-grade kaolin of Sinai fulfills the standards required for ceramics manufacturing in the global market. Grade 3 kaolin (< 30%, Al2O3) can be used in the manufacturing of white Portland cement and red glaze manufacturing on both local and global markets. 相似文献