首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
变质相平衡的研究进展   总被引:18,自引:3,他引:18  
魏春景  周喜文 《地学前缘》2003,10(4):341-351
变质相平衡是变质岩石学中最核心的问题之一,20世纪90年代以来,国外在这一领域取得了重要进展,即利用内洽性热力学数据库、THERMOCALC程序以及合理的矿物相活度模型定量计算模式体系中的岩石成因格子(P-T投影图)和有关的各种剖面图,如共生图解和针对特定岩石组分的p-T、p-x和T-x视剖面图等。尤其是在p-T视剖面图解上,可以定量计算矿物成分、矿物摩尔含量及岩石饱和水含量等值线,从而可以定量地阐述天然岩石在p-T-x空间内的相平衡关系、确定岩石形成的p-T条件和p-T-t轨迹。  相似文献   

2.
高级变质岩中深熔作用的相平衡研究   总被引:3,自引:0,他引:3  
魏春景  王伟 《地学前缘》2007,14(1):125-134
深熔作用在高级变质岩中非常普遍并受到广泛关注。自20世纪90年代以来,随着变质相平衡研究的突破性发展,利用THERMOCALC程序和视剖面图方法可以定量研究固相线以上的熔体形成、熔体分馏和退变质反应。变质沉积岩中的熔融作用主要有三种机制饱和水固相线上的熔融、白云母脱水熔融和黑云母脱水熔融。在模拟泥质岩石的KFMASH体系和NCKFMASH体系中的相平衡计算表明,NCKFMASH体系中铁镁矿物的相平衡关系受KFMASH亚体系中矿物相平衡关系的控制,但KFMASH亚体系中固相线位置要比实际的高50~60℃。因此,模拟泥质岩石的固相线以上的相平衡关系最好在NCKFMASH或组分更多的体系中进行。相平衡研究表明麻粒岩相岩石的保存与熔体丢失有关;混合岩的形成过程包括部分熔融作用、不同程度熔体分凝与汲取和不同程度的逆反应和退变反应。  相似文献   

3.
利用最新的内洽性热力学数据库和THERMOCALC3.21程序对胶北地块高压与低压泥质麻粒岩的相平衡关系进行了定量分析。计算了胶北地块高压泥质麻粒岩、低压泥质麻粒岩和夕线石榴黑云片岩等代表性富铝岩石KFMASH(K2O-FeO-MgO-Al2O3-SiO2-H2O)体系的p-T视剖面图,再现了这些岩石随温压条件变化可能出现的各种矿物组合与矿物成分变化,发现原岩成分不同的变质岩石,尽管变质演化过程有所差异,但在麻粒岩相变质条件下所形成的矿物组合一致。通过计算泥质岩石在高压(p=1.0GPa)和低压(p=0.5GPa)条件下的T-X视剖面图,发现极度富铁、贫镁的岩石,在高压麻粒岩相条件下并不会生成含蓝晶石的特征矿物组合,在低压麻粒岩相条件下也不会生成含堇青石的特征矿物组合。将样品实际观测结果与p-T视剖面图的计算结果对比,确定胶北地块高压泥质麻粒岩变质峰期的温压条件为830~860℃,1.25~1.4GPa,峰期后呈现顺时针样式的p-T演化轨迹,反映陆壳先碰撞增厚、后又快速减薄的地质动力学过程;确定胶北地块低压泥质麻粒岩变质峰期的温压条件为790~820℃,0.62~0.68GPa,峰期后呈现近等压冷却的p-T演化轨迹。  相似文献   

4.
田作林  张泽明  董昕 《岩石学报》2020,36(9):2616-2630
变质相平衡模拟是变质岩领域近几十年最重要的进展之一,它已经成为确定变质作用P-T-t轨迹和探索变质演化过程的有力工具。变质岩的矿物组合不但与其形成的温度(T)和压力(P)条件有关,而且受控于岩石的全岩成分(X)。但是变质岩通常是不均匀的并且往往保留两期以上的矿物组合,因此计算不同成分域或不同变质演化期次的有效全岩成分是模拟P-T视剖面图的核心问题之一。在中-低温变质岩中,石榴石变斑晶的生长会不断地将其核部成分"冻结"而不参与后续变质反应,这导致根据实测全岩成分计算的P-T视剖面图无法有效地模拟石榴石幔部或边部生长阶段的变质演化过程。"瑞利分馏法"和"球体积法"利用电子探针实测的石榴石成分环带可以模拟计算石榴石各个生长阶段所对应的有效全岩成分,本文推荐使用这两个方法来处理石榴石变斑晶的分馏效应问题。相比较而言,石榴石在高温变质岩中通常无法保留生长阶段的成分环带特征,这是因为石榴石成分在高温条件下会发生扩散再平衡,并同时与多数基质矿物达到热力学平衡,这时一般不需要考虑石榴石的分馏效应。但是高温变质岩通常会发生部分熔融并伴随熔体的迁移,进而改变岩石的有效全岩成分。因此,通过P-T视剖面图模拟熔体迁移前后的变质演化过程需要使用"相平衡法"计算迁移的熔体成分以及熔体迁移前后岩石的有效全岩成分。此外,后成合晶与反应边是变质岩中最常见的退变质反应结构,但是后成合晶或反应边中的矿物之间并未达到热力学平衡。这种情况需要结合岩相学观察和矿物成分,利用最小二乘法确定后成合晶或反应边中发生的平衡反应方程式,进而获取变质反应发生时的有效全岩成分并通过计算P-T视剖面图来估算退变质的温压条件。除此之外,岩石体系中三价铁(Fe2O3)和H2O含量的估算一直以来都是相平衡模拟研究中的难点,本文推荐使用P/T-X(Fe3+/Fetot,MH2O)视剖面图来确定这两个组分的含量,这是因为P/T-X图可以估算各个变质演化阶段或特定矿物组合的Fe2O3或H2O含量。  相似文献   

5.
北秦岭二郎坪群低压变质作用研究   总被引:5,自引:0,他引:5  
在对二郎坪群低压变质带进行相图分析后发现,二郎坪群低压变质带是叠加变质带,低压变质作用是在早期中压变质的抬升过程中发生的,中压变质的温压条件为0.5-0.6GPa、560~580℃,低压变质的压力为0.3-0.45GPa,红柱石-十字石带的温度为510~580℃,堇青石带为590-620℃。pT视剖面图在区分岩石中不同条件和期次的矿物组合及分析岩石温压演化历史和温压条件时显得更行之有效。  相似文献   

6.
新疆阿尔泰造山带低压变质作用相平衡研究   总被引:2,自引:3,他引:2  
通过对阿尔泰造山带低压型变质序列中典型泥质岩石进行详细的岩相学及相平衡研究,获得黑云母带变质作用的温度为445~550℃和压力为0.2~0.6 GPa;石榴石带为480~566℃、0.54±0.22 GPa;十字石带601±20℃、0.8±0.25GPa;十字石-红柱石带540±20℃、0.32±0.05 GPa,而632.4℃、0.785 GPa这个值不是红柱石的稳定范围,这可能是其早期中压变质作用条件;矽线石带为640℃、0.43 GPa左右,由于石榴石中有蓝晶石包体,因此其早期也可能经历中压条件的变质;堇青石-矽线石带740~800℃、0.4~0.7 GPa。阿尔泰造山带低压变质序列不是一个正常的变质序列,其野外变质梯度呈现“Z”字型特征。阿尔泰造山带低压变质作用可能形成于早期中压变质岩的挤压抬升和以此相关的大量花岗岩侵入的构造环境中。  相似文献   

7.
8.
魏春景  朱文萍 《岩石学报》2016,32(6):1611-1624
麻粒岩相岩石作为洞察下地壳的窗口一直备受重视。二十世纪九十年代以来麻粒岩研究的一个重要进展是利用变质相平衡的定量研究方法模拟岩石中所发生的深熔变质反应、熔体成分变化、及熔体丢失对变质矿物组合的影响等。本文利用KASH、NKASH和KFMASH等简单体系的相平衡关系,做出P-T投影图、组分共生图解和基于固定全岩成分的P-T视剖面图解,并结合有关实验岩石学结果,讨论了高温和超高温条件下变质泥质岩和杂砂岩中的变质熔融反应、矿物组合、全岩成分与P-T条件之间的相互关系。多数变质泥质岩和杂砂岩中饱和流体固相线熔融反应可利用NKASH体系中有水流体参与的熔融反应模拟,在没有外来流体注入时,这些反应可形成<3mol%熔体。在不同体系中白云母脱水熔融反应型式及其P-T条件不同,如在NKASH和KFMASH体系中模拟计算的白云母脱水熔融反应与相应的实验结果相似,分别控制了白云母分解熔融的温度下限和上限;白云母的分解温度会随着其中Fe、Mg和Ti含量的增加而升高,也随着共生斜长石中钙长石组分增加而升高,泥质岩中白云母脱水熔融可以形成~10mol%熔体。在KFMASH体系中黑云母脱水熔融反应表现为4条单变反应,其理论计算的温度比实验模拟的结果低一些。在NCKFMASH体系或实际岩石中黑云母脱水熔融反应为滑动反应,如NCKFMASH体系中黑云母从其开始熔融到最后消失在泥质岩中可跨越~100℃,在杂砂岩中可跨越30~50℃。黑云母的稳定温度随着镁值升高而升高,其稳定上限受钛影响更大,黑云母脱水熔融可以形成超过30mol%~40mol%熔体。KFMASH体系中的相平衡模拟表明以出现斜方辉石+夕线石和假蓝宝石为特征的超高温组合易于出现于富镁泥质岩中,而对正常成分泥质岩在达到1000℃的超高温条件下,主要出现石榴石+夕线石(即夕线榴),该组合在更高温度反应形成假蓝宝石+尖晶石。利用饱和水固相线反应和白云母与黑云母分解反应可以更好地限定不同的变质相。如中压和低压条件下低角闪岩相和高角闪岩相的界限可利用NKASH体系中有水流体和白云母参与的熔融反应和亚固相线条件下的白云母分解反应限定;实验确定的泥质岩中黑云母开始熔融与消失的反应可分别用于限定高角闪岩相与(正常)麻粒岩相的界限,以及(正常)麻粒岩相和超高温麻粒岩相的界限。因此,从矿物组合角度,正常麻粒岩相可限定在黑云母开始熔融到完全消失的温度范围,超高温麻粒岩相可限定在黑云母消失(有石英存在)之后的温度范围。  相似文献   

9.
拉萨地块松多榴辉岩主要矿物组合为石榴子石、绿辉石、角闪石、多硅白云母、绿帘石、金红石。石榴子石环带不明显,核部成分均一,从核部到边部,镁铝榴石和钙铝榴石含量降低,可能分别记录了榴辉岩峰期及退变质过程信息。绿辉石显示微弱的成分环带,硬玉含量从核部到边部略有升高,部分绿辉石边部发育韭闪石退变质边,反映了在减压过程中外来流体进入体系的过程。多硅白云母具有高的Si含量(3.5~3.6),其中石榴石包体中的多硅白云母相对基质中的白云母有更高的Si值。本文利用Thermocalc变质相平衡模拟软件,结合详细岩相学观察,在NCKMn FMASHTO体系下,模拟松多含多硅白云母榴辉岩的变质演化过程。其中,榴辉岩峰期矿物组合为g+o+law+phn+ru,石榴石核部最大镁铝榴石值和石榴子石包体中多硅白云母最大Si值确定的榴辉岩峰期温压条件约为620℃,32×105Pa,榴辉岩经历了近等温降压的退变质过程。相平衡模拟结果表明拉萨地块松多榴辉岩经历了超高压变质作用过程,并经历了相对快速的折返过程到中部地壳层次。  相似文献   

10.
拉萨地块松多超高压变质带含石榴石白云母石英片岩为榴辉岩的围岩,岩石的矿物组合为石榴石、白云母、钠长石、绿泥石、石英及少量金红石、榍石。石榴石具有明显的成分环带,从核部到幔部Xprp=[Mg/(Mg+Fe+Mn+Ca)]缓慢升高,Xsps=[Mn/(Mg+Fe+Mn+Ca)]逐渐降低,表明石榴石从核部到幔部的成分记录了温度逐渐升高的进变质过程;幔部到边部,Xprp=[Mg/(Mg+Fe+Mn+Ca)]略微降低,Xgrs=[Ca/(Mg+Fe+Mn+Ca)]明显升高,Xsps=[Mn/(Mg+Fe+Mn+Ca)]先升高后降低,表明石榴石边部成分受到了退变质作用改造,呈现扩散环带的特征。利用Thermocalc变质相平衡计算软件在Mn NCKFMASHO体系下计算出含石榴石云母石英片岩的P-T、P-M(H2O)视剖面图,结合石榴石镁铝榴石等值线、钙铝榴石等值线及饱和水含量等值线限定出含石榴石云母石英片岩的峰期变质条件为约27×105k Pa,523/580℃,对应的峰期矿物组合为(g-Jd-Cr-Law(+Phn+q/Coe+H2O)。石榴石核部到幔部成分记录了主要的进变质演化,结合饱和水等值线的变化,判断进变质阶段为升温升压的冷俯冲过程,岩石经历了蓝片岩相至榴辉岩相的变质演化;P-M(H2O)视剖面图及饱和水等值线反映了岩石在减压中的流体行为,通过其变化特征可以确定岩石在峰期之后先经历近等温降压的早期退变质过程,晚期降温降压的退变轨迹则由石榴石边部成分所确定,此过程中,岩石发生了角闪岩相至绿帘角闪岩相变质,并在后期经历了绿片岩相变质叠加。近等温降压的退变质过程反映了快速抬升的构造运动过程,早期硬玉转变为钠长石可能发生在这个阶段。对比含石榴石云母石英片岩与榴辉岩的P-T轨迹,峰期变质温压及变质演化特征,提出含石榴石云母石英片岩曾经历过高压变质,结合野外相互伴生的地质关系,认为该片岩与榴辉岩经历了相同或者相似的俯冲折返过程。  相似文献   

11.
In general, accessory minerals are expected to participate in partial fusion of their host rocks to a degree determined simply by their solubilities in the melt. The possibility must be recognized, however, that a given accessory grain may be physically isolated from the melt by inclusion within a residual major mineral. Because of the importance of accessory minerals to crustal-rock trace element and isotope geochemistry, and because of their common existence as inclusions in major phases, we undertook an evaluation of the factors that affect inclusion formation during ultrametamorphism. Three approaches are taken: 1) a review of interfacial energy considerations is used to show that the free energy of the system is lowered by location of accessory minerals at major-phase grain perimeters, and that the magnitude of this effect is proportional to the square of the accessory grain radius; 2) annealing and partial melting experiments (1000° C, 10 and 15 kbar) on rock analogs are described, and the results are shown to confirm the predicted tendency of accessory minerals to occupy grain boundaries; and 3) the results of a study of accessory phase (rutile and zircon) distribution in a migmatite from the Tibetan slab are reported, again in confirmation of the prediction that accessories tend to be situated at majorphase grain perimeters. The latter two aspects of the study reveal that, although included accessory grains are common, their generally small size results in only a minor contribution to the bulk-rock budget of accessory mineral components: Most of the mass of these components is contained within populations of generally larger accessory grains located at major-phase grain boundaries. Accordingly, the assumption that accessory minerals are involved in crustal melting is generally valid.  相似文献   

12.
Microstructures of melt inclusions in anatectic metasedimentary rocks   总被引:2,自引:0,他引:2  
The occurrence of crystallized and glassy melt inclusions (MI) in high‐grade, partially melted metapelites and metagraywackes has opened up new possibilities to investigate anatectic processes. The present study focuses on three case studies: khondalites from the Kerala Khondalite Belt (India), the Ronda migmatites (Spain), and the Barun Gneiss (Nepal Himalaya). The results of a detailed microstructural investigation are reported, along with some new microchemical data on the bulk composition of MI. These inclusions were trapped within peritectic garnet and ilmenite during crystal growth and are therefore primary inclusions. They are generally isometric and very small in size, mostly ≤15 μm, and only rarely reaching 30 μm; they occur in clusters. In most cases inclusions are crystallized (‘nanogranites’) and contain a granitic phase assemblage with quartz, feldspar and one or two mica depending on the particular case study, commonly with accessory phases (mainly zircon, apatite, rutile). In many cases the polycrystalline aggregates that make up the nanogranites show igneous microstructures, e.g. granophyric intergrowths, micrographic quartz in K‐feldspar and cuneiform rods of quartz in plagioclase. Further evidence for the former presence of melt within the investigated inclusions consists of melt pseudomorphs, similar to those recognized at larger scale in the host migmatites. Moreover, partially crystallized inclusions are locally abundant and together with very small (≤8 μm) glassy inclusions may occur in the same clusters. Both crystallized and partially crystallized inclusions often display a diffuse nanoporosity, which may contain fluids, depending on the case study. After entrapment, inclusions underwent limited microstructural modifications, such as shape maturation, local necking down processes, and decrepitation (mainly in the Barun Gneiss), which did not influence their bulk composition. Re‐homogenized nanogranites and glassy inclusions show a leucogranitic and peraluminous composition, consistent with the results of partial melting experiments on metapelites and metagraywackes. Anatectic MI should therefore be considered as a new and important opportunity to understand the partial melting processes.  相似文献   

13.
Evolving pressure–temperature conditions during metamorphism drive changes in the stable mineral assemblage, mineral proportions and mineral compositions in rocks. These changes are achieved via the diffusion of components between minerals, fluid and melt, the driving force for diffusion being the gradients in chemical potential of the components developed spatially within the rock. This study utilises recent developments in the software thermocalc to investigate quantitatively chemical potential relationships in rocks, with the phases involved being (solid) solutions. Phase diagrams with chemical potentials as axes are used to understand better the spatial rearrangement of components during the metamorphic evolution of rocks and the metamorphic textures that result. In contrast to qualitative chemical potential diagrams, quantitative diagrams can be contoured for mineral composition, allowing consideration of chemical zoning in minerals. Furthermore, the amount of material required to diffuse to equalise chemical potentials can be calculated. We start by demonstrating the approach via an example of retrograde corona development in an ultra-high-temperature granulite. Whereas the use of chemical potentials to consider the retrograde development of corona textures is well known, they are also significant in considering the prograde history. The role of chemical potentials in prograde metamorphic textural evolution is highlighted in consideration of the consumption and growth of aluminosilicates during the kyanite-to-sillimanite reaction, and the growth of garnet porphyroblasts.  相似文献   

14.
Fluids in metamorphic rocks   总被引:11,自引:0,他引:11  
J. L. R. Touret   《Lithos》2001,55(1-4):1-25
Basic principles for the study of fluid inclusions in metamorphic rocks are reviewed and illustrated. A major problem relates to the number of inclusions, possibly formed on a wide range of PT conditions, having also suffered, in most cases, extensive changes after initial trapping. The interpretation of fluid inclusion data can only be done by comparison with independent PT estimates derived from coexisting minerals, but this requires a precise knowledge of the chronology of inclusion formation in respect to their mineral host.

The three essential steps in any fluid inclusion investigation are described: observation, measurements, and interpretation. Observation, with a conventional petrographic microscope, leads to the identification and relative chronology of a limited number of fluid types (same overall composition, eventually changes in fluid density). For the chronology, the notion of GIS (Group of synchronous inclusions) is introduced. It should serve as a systematic basis for the rest of the study. Microthermometry measurements, completed by nondestructive analyses (mostly micro-Raman), specify the composition and density of the different fluid types. The major problem of density variability can be significantly reduced by simple considerations of the shape of density histograms, allowing elimination of a great number of inclusions having suffered late perturbations. Finally, the interpretation is based on the comparison between few isochores, representative of the whole inclusion population, and PT mineral data. Essential is a clear perception of the relative chronology between the different isochores. When this is possible, as illustrated by the complicated case of the granulites from Central Kola Peninsula, a good interpretation of the fluid inclusion data can be done. If not, fluid inclusions will not tell much about the metamorphic evolution of the rocks in which they occur.  相似文献   


15.
The distribution of U has been studied in two metamorphic rock-series with a gradient of regional metamorphism. One series ranges from the lowest greenschist to amphibolite facies and the other one shows increasing metamorphic grade from amphibolite to granulite facies. Several medium and high pressure granulitic inclusions from alkali basalts were also analyzed. The abundances of U in the rocks do not appear to be affected by metamorphism below the granulite facies grade. Granulites are depleted in U in comparison with equivalent rocks of amphibolite facies grade. There are also differences in their U distribution, as the bulk of U in amphibolite facies rocks is located along the fractures and cleavage planes of ferro-magnesian minerals and in U-rich accessories, while in granulites, most of the U resides in accessory minerals. It seems that the depletion of U in granulites is due to a loss of U which is not located in accessory minerals or in the crystal structure of rock-forming minerals and may also be related to a migration of hydrous fluids, perhaps during dehydration.  相似文献   

16.
陈曼云  金巍  郑常青 《岩石学报》2009,25(8):1749-1752
变质岩分类的三要素是:变质岩的物质成分(化学成分、矿物成分)、变质岩的组构(结构、构造)和变质岩的成因(变质作用类型和形成变质岩的物理化学条件).由于变质岩的化学成分、矿物成分、组构特征和形成变质岩的地质环境十分复杂,致使至今尚无以变质岩分类三要素为基础的、内容比较完善的分类方案.本文中主要变质岩的分类是以其分类三要素为基础编制的,首次将不同成因的变质岩类并列于同一表中、将鉴定变质岩的主要标志性矿物成分和组构特征列入同一分类表中.该分类对鉴定变质岩石具有可操作性和实用性,分类表中涵盖了自然界主要的变质岩石.  相似文献   

17.
Omphacite in Californian metamorphic rocks   总被引:3,自引:0,他引:3  
Omphacite is a common mineral in greenstones, metasediments and related Franciscan rocks of the glaucophane schist facies. It also occurs in late veins cutting amphibolites, glaucophane schists, eclogites, greenstones, and occasionally metagraywackes. It is apparent that this mineral is stable under glaucophane schist facies conditions in rocks of a suitable bulk composition, and is not restricted to the eclogite facies. Association with albite, quartz and lawsonite, and late veining of omphacite veins by aragonite indicates that pressures necessary to form omphacite are reasonably close to those calculated from an ideal solution model.  相似文献   

18.
Prediction of a unique sequence of metasomatic zones that would develop by intergranular diffusion with local equilibrium is possible only for relatively simple systems, unless extensive thermochemical and kinetic information is available. The complexity of the problem for a given example will depend on what portion of the set of chemical components required to describe the example are ‘diffusing components’, that is, components that move relative to ‘inert markers’. Diffusing components are commonly K-components (Thompson, 1970) for the various local equilibria of a sequence of metasomatic zones, since diffusion tends to impose a monotonie variation of the chemical potentials of these components across the zones. The number of diffusing components may vary from zone to zone in a particular example, as may the number of diffusing components that are K-components. Calculation of the rate of growth of a specific sequence of zones is relatively straightforward only for cases where the zones are primarily due to the variation of the chemical potential of one independent diffusing component. Calculation of the material transfer involved in the growth of a sequence of zones, assuming a single sharp initial contact is meaningful only if ‘inert markers’ or a discontinuity in the otherwise-constant ratio of two components indicate the present location of the initial contact. Examination of some natural calc-silicate diffusion zones suggests that a diffusion-imposed gradient in the chemical potential of calcium is largely responsible for the observed zonation. Metasomatic zones developed at the boundaries of ultramafic bodies, however, are produced by diffusion-imposed chemical potential gradients of several components, notably silica and magnesia, the number varying from zone to zone.  相似文献   

19.
大多数阴极发光研究都是在从岩石样品分选出的锆石上进行的。然而,要弄清形成演化历史复杂的锆石成因很困难。为了克服这一不足,更好地了解锆石是如何受周围环境的影响,对变质岩广泛分布的大青山地区3个变质岩石样品进行了薄片下的锆石阴极发光研究。主要结论为:包裹在造岩矿物中的锆石,变质增生边不发育,但可发生不同程度的重结晶;流体对锆石重结晶和变质增生边形成具有重要的意义,流体可来自岩石体系之外,也可来自其内部;以往的研究中,一些重结晶锆石可能被错误地当作了变质增生锆石。  相似文献   

20.
The Precambrian metamorphic rocks of Ceylon consist of basement gneisses, termed the Vijayan Series; which are overlain by supracrustal metasediments of the Highland Series and Southwest Group. All these rocks have been formed deep in the earths crust under PT conditions of the granulite facies. The apparent differences in metamorphic grade, structure and ultimately topographical expressions can be attributed to original differences in composition.An interpretation of all available geological, structural and geochronological data suggests that the Vijayan basement, quartzofeldspathic gneisses were formed at about 3000 m. y. The Highland Series-Southwest Group geosynclinal sediments were deposited on this basement and were metamorphosed at 2000 m. y. The Highland Series association of quartzite-marble-sillimanite garnet gneiss suggests a limestone-sandstone-shale derivation; while the Southwest Group hypersthene gneiss-metasedimentary sequence indicates a shale-greywacke parentage. The simple notherly trends of this orogen cuts and truncates the more complex Vijayan basement structures.At about 1200 m. y. the Vijayan basement was completely remobilized and at the same time hypersthene gneisses were formed in the Southwest Group. A final lowpressure metamorphic overprint at 650-450 m.y. formed cordierite, wollastonite and andalusite in rocks of appropriate composition in the Southwest Group; only locally affecting the Highland Series. Both the northwest trending Southwest Group and the northerly striking Highland Series can be considered a paired metamorphic belt, where respectively low P/T and intermediate P/T conditions were operative. The Vijayan is a basement complex of wet quartzofeldspathic gneisses in an intricate dome and basin tectonic style.
Zusammenfassung Die präkambrischen metamorphen Gesteine Ceylons bestehen aus Basis-Gneisen, genannt Vijayan-Serie, die überlagert sind von suprakrustalen Meta-Sedimenten (Paragesteinen), der Highland-Serie (Hochlandserie) und der Südwest-Gruppe. Alle diese Gesteine wurden tief in der Erdkruste unter PT-Bedingungen der Granulitfazies geprägt. Die deutlichen Unterschiede in Metamorphosegrad, Tektonik und letztlich in topographischer Hinsicht können ursprünglichen Unterschieden in der Zusammensetzung zugeordnet werden.Eine Interpretation aller erhältlichen geologischen, tektonischen und geochronologischen Daten weist darauf hin, daß die Vijayan-Liegendgneise ungefähr vor 3 Milliarden Jahren ihre metamorphe Prägung erhielten. Die Geosynklinalsedimente der Hochlandserie und Südwest-Gruppe wurden auf diesem Basement abgelagert und vor ca. 2 Milliarden Jahren metamorphisiert.Die Hochland-Gesteinsvergesellschaftung (Quarzite, Marmore, Sillimanit-Granat-Gneise) legt eine Kalkstein-Sandstein-Tonschiefer-Abkunft nahe, während die Hypersthengneis-Metasedimentabfolge der Südwestgruppe auf Tonund Grauwacke-Herkunft schließen läßt. Die nördlichen Hauptstreichrichtungen dieses einfach gebauten Orogens durchschneiden oder unterbrechen die mehr komplexen Strukturen der Vijayan-Liegendserie.Vor ca. 1,2 Milliarden Jahren wurde die Vijayan-Basisserie völlig remobilisiert, und zur selben Zeit wurden Hypersthengneise in der Südwestgruppe gebildet. Eine abschließende metamorphe Überprägung bei geringen Drucken vor 650 bis 450 Millionen Jahren formte Cordierit, Wollastonit und Andalusit in Gesteinen entsprechender (geeigneter) Zusammensetzung in der Südwestgruppe. Nur lokal wurden auch Gesteine der Hochlandserie davon betroffen.Beide Serien — die Hochlandserie und die Südwestgruppe — können als eine geteilte (gemeinsame) metamorphe Zone mit niedrigen bzw. mittleren P/T-Bedingungen angesehen werden. Die Vijayan-Basisserie ist ein Komplex von nassen Gneisen mit kompliziertem tektonischem Aufbau.

Résumé Les roches métamorphiques précambriennes de Ceylon consistent en un soussol de gneiss, nommé la «série de Vijayan». Elles sont recouvertes de métasédiments des «series des Highlands» et du «Groupe du Sud-Ouest». Toutes ces roches se sont formées profondement dans la crôute de la terre sous les conditions de pression et de température du faciès granulite. Les differences apparentes dans le degré métamorphique, la structure et finalement dans les expressions topographiques peuvent être attribués aux différences originales de composition.Une interprétation de toutes les données disponibles quelles soient géologiques, structurales et géochronologiques indiquerait que la gisement Vijayan (gneiss quartzofeldspatique) s'est formé il y a environ 3000 M. A. La série des Highlands et le groupe du Sud-Ouest, qui sont des sediments geosynclinaux, furent deposés sur ce gisement et furent métamorphisés il y a 2000 M. A. Les séries des Highlands, association de marbre, quartzite et de gneiss à grenat sillimanite indiquerait un passage du calcaire au grès, puis à l'argile schisteuse tandis que le groupe du Sud-Ouest formé de gneiss à hypersthene à séquence métasedimentaire indique une origine d'argile et grauwacke. Les directions principales vers le nord de cet orogène tronque les structures du gisement plus complexe de Vijayan.Il y a environ 1200 M. A. le gisement du Vijayan fut totalement modifé, et en même temps le gneiss à hypersthène s'est formé dans le groupe du Sud-Ouest. Un metamorphisme final à basse pression il y a 650-450 M. A. forma la cordiérite, la wollastonite et l'andalousite dans les roches de composition appropriée dans le groupe du Sud-Ouest, affectant seulement localement les séries du Highland. Le groupe du Sud-Ouest à direction nord-ouest et la série des Highlands à direction vers le nord peuvent tous les deux être considerés comme une double ceinture métamorphique, où respectivement les conditions de pression basse et intermediaire sont realisés. Le Vijayan est un gisement complexe du gneiss quartzofeldspathique « humide » dans un dôme et une bassine de style tectonique.

, Vijayan, (Paragesteine) (Highlandserie) - . . , . , , Vijayan . - 2 . — , , , - — - - , , — - — , . Vijayan. 1,2 Vijayan - - . - 650-450 , , . . — - — , ( ) , . Vijayan .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号