首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
以乙烯基树脂(VE)为基体,竹纤维(BF)为增强材料,通过偶联剂KH602对纳米SiO2进行改性处理,并利用改性后纳米SiO2分别对竹纤维和树脂进行改性处理,采用真空辅助树脂传递模塑成型工艺(VARTM)制备了BF/VE复合材料。采用FTIR、SEM对改性后纤维和树脂的表面物理化学状态进行表征,结果表明:改性纳米SiO2成功化学接枝到竹纤维表面且分散到树脂基体中,改性纳米SiO2在BF1/VE0.5 (用1.0wt%改性纳米SiO2改性纤维和0.5wt%改性纳米SiO2改性树脂)复合材料中分散更为均匀;采用力学试验机和SEM对复合材料力学、断口和表面形貌进行分析,考察改性纳米SiO2的添加量对BF/VE复合材料力学性能、界面性能的影响。结果表明:BF1/VE0.5复合材料的拉伸、弯曲及冲击强度分别达到最大值49.0 MPa、70.6 MPa和150.4 J/m,与未处理的复合材料相比分别提高了18.9%、26.1%、70.7%。此外,还初步探讨了改性纳米SiO2的界面增强机制。   相似文献   

2.
王春齐  江大志  肖加余 《功能材料》2012,43(22):3045-3048,3053
先采用机械搅拌和超声分散方式在环氧树脂中分散纳米SiO2微粒,通过扫描电镜表征断面的形貌来分析纳米SiO2分散效果,再采用力学性能测试,研究纳米SiO2对环氧树脂及其玻璃纤维增强复合材料性能的影响,结果表明,超声分散效果明显优于机械搅拌分散;纳米SiO2含量对分散效果、环氧树脂及其复合材料力学性能具有显著影响;采用超声分散的1%(质量分数)纳米SiO2改性环氧树脂浇铸体的弯曲强度比未改性的提高了21.2%,其玻璃纤维增强复合材料的弯曲和拉伸强度分别提高了9.7%和7.9%,但层间剪切强度则降低了10.6%。  相似文献   

3.
以硅烷偶联剂KH560为表面活性剂对石墨烯进行表面改性,以改性石墨烯为增强体,环氧树脂为基体制备了改性石墨烯/环氧树脂复合材料,研究了改性石墨烯含量、载荷对复合材料的摩擦磨损性能的影响。结果表明,硅烷偶联剂KH560成功嫁接至石墨烯表面;改性石墨烯降低了环氧树脂的磨损量和摩擦系数,且改性石墨烯/环氧树脂复合材料的磨损量和摩擦系数随改性石墨烯含量增加均减小,当载荷为150 N、改性石墨烯含量为0.5%时,复合材料的磨损量和摩擦系数分别降低了44.9%和17.4%;随着载荷增加,改性石墨烯/环氧树脂复合材料的磨损量和摩擦系数均减小;低载荷下,纯环氧树脂及改性石墨烯/环氧树脂复合材料的磨损形式主要为疲劳磨损,改性石墨烯能抑制微裂纹的产生及扩展;载荷增加后,纯环氧树脂及改性石墨烯/环氧树脂复合材料的磨损形式主要为磨粒磨损,且复合材料磨损表面的犁沟相对较少。  相似文献   

4.
为改善玻璃纤维/环氧树脂(GF/EP)复合材料的耐摩擦磨损性能,采用真空抽滤法制备柔性MoO3纳米带-氧化碳纳米管膜(m-MoO3-OCNTs),并结合真空辅助树脂转移模塑(VARTM)工艺制备m-MoO3-OCNTs改性GF/EP (m-MoO3-OCNTs-(GF/EP))复合材料。结果表明,m-MoO3-OCNTs显著提高了GF/EP复合材料的导热系数和自润滑性能,在干摩擦测试条件下,可在m-MoO3-OCNTs-(GF/EP)复合材料与对偶面之间形成有效传递摩擦热的高质量连续转移膜;与GF/EP复合材料相比,m-MoO3-OCNTs-(GF/EP)复合材料的耐摩擦磨损磨性能提高了约4倍。  相似文献   

5.
纤维含量是影响真空辅助树脂传递模塑成型(VARTM)技术制备高性能纤维复合材料的关键因素之一,通过考察竹纤维(BF)含量对VARTM成型过程中环氧树脂(EP)浸渍BF效果及BF/EP复合材料性能的影响,为竹纤维复合材料实际应用提供理论支撑.利用湿法层铺工艺将竹纤维束制作成竹纤维毡,再利用VARTM成型工艺制备出BF含量...  相似文献   

6.
微米和纳米SiO2改性聚四氟乙烯的摩擦磨损性能   总被引:16,自引:4,他引:16       下载免费PDF全文
使用超细及纳米SiO2颗粒填充改性聚四氟乙烯塑料。测量其摩擦系数、磨损系数、结晶度,得到了填加量与复合材料摩擦系数、磨损系数和结晶度的关系曲线,并使用扫描电镜(SEM)对其表面形貌进行了分析。结果表明,无论微米或纳米SiO2、表面处理后的纳米SiO2,均使PTFE的摩擦系数有所提高,而耐磨损性能也有大幅度的提高。填充量小于6%时,填加未经偶联剂处理的纳米SiO2的SiO2/PTFE复合材料的磨损率降低98.5%;填充量大于6%以后,磨损率趋于稳定;填充量为6%时,摩擦系数仅从未加填料时的0.1提高为0.12。而偶联剂表面处理的纳米SiO2复合材料的摩擦系数提高幅度最小。   相似文献   

7.
纳米SiO2/环氧树脂复合材料性能研究   总被引:21,自引:0,他引:21  
以纳米SiO2作为增强材料,制备纳米复合材料,研究了不同的纳米SiO2含量对纳米复合材料性能的影响,采用透射电镜对纳米SiO2粒子的分布进行了表征,采用正电子湮没技术(PALS)测试了自由体积的尺寸及浓度。结果表明,当纳米粒子SiO2含量为3%时,自由体积浓度最小,纳米复合材料的性能最佳。  相似文献   

8.
环氧树脂/超支化聚酯/纳米SiO2复合材料的制备及性能   总被引:1,自引:0,他引:1  
采用超支化聚酯与聚硅酸溶胶共混改性环氧树脂,制备了环氧树脂/超支化聚酯/纳米SiO2三元共混体系纳米复合材料。研究了超支化聚酯/聚硅酸溶胶增韧改性环氧树脂固化体系的力学性能及热性能,通过X射线衍射(WAXD)、差示扫描量热(DSC)、热重分析(TGA)及扫描电镜(SEM)等测试手段对材料的微观相态结构与性能进行了表征。结果表明,超支化聚酯/聚硅酸的加入使纳米复合材料的力学性能和热性能得到明显提高。当纳米SiO2的含量为1%(质量分数,下同)时冲击强度比纯环氧树脂提高了10.48kJ/m2,材料的起始热分解温度也提高了27℃。  相似文献   

9.
纳米粒子改性环氧树脂及其复合材料力学性能研究   总被引:6,自引:0,他引:6  
通过机械共混法制备了Al2O3纳米粒子改性环氧树脂基体,研究了纳米粒子含量对改性树脂基体力学性能的影响,并采用紧凑拉伸实验研究了纳米粒子改性环氧树脂的断裂韧性。利用改性树脂制备了玻璃纤维增强复合材料,研究了改性复合材料的力学性能与纳米粒子含量之间的关系。结果表明:纳米粒子的加入明显改善了环氧树脂基体的断裂韧性并且有助于提高树脂与纤维之间的界面粘接强度,因而使改性复合材料的层间性能明显提高而其他力学性能基本不变。  相似文献   

10.
无机纳米粒子改性环氧树脂复合材料研究进展   总被引:2,自引:0,他引:2  
综述了近年来无机纳米粒子改性环氧树脂复合材料的研究现状,概括了纳米粒子改性环氧树脂的方法,详细介绍了氧化硅、氧化铝、蒙脱土、氧化钛、碳酸钙等纳米粉体以及碳纳米管等改性环氧树脂复合材料取得的研究进展,展望了此类复合材料的发展趋势及应用前景。  相似文献   

11.
以聚乳酸(PLA)为前驱体,碳纤维(CF)为增强体,通过经纬编织成PLA-CF复合纤维织物;以环氧树脂(EP)为基体,甲基硅油为润滑介质,采用前驱体蒸发(VaSC)技术和真空浸油方式分别制备了脉管自润滑环氧树脂(VAEP)材料和CF/VAEP复合材料。利用SEM对CF/VAEP复合材料的断面、摩擦面和对偶面形貌进行表征,以万能材料试验机和高速环块摩擦磨损试验机对CF/VAEP复合材料的力学和摩擦学性能进行了测试。结果表明:脉管结构和CF提升了EP的润滑性能和力学性能。当径向脉管密度为8孔/10 mm时,VAEP的摩擦系数和磨损率较纯EP分别降低了67.95%和85.71%;当径向脉管密度为8孔/10 mm,CF经纬丝束比为8/4时,CF/VAEP复合材料的拉伸强度、拉伸模量、弯曲强度、弯曲模量比相同径向脉管密度的VAEP分别提高了203.33%、44.16%、325.78%、311.37%。   相似文献   

12.
为验证复合材料的耐久性,对T700碳纤维增强环氧树脂基复合材料经自然老化后的微观形貌、表面元素含量、热性能与力学性能等进行了研究。结果表明: 在光氧老化与热氧老化的共同作用下,T700碳纤维增强EP-A环氧树脂基(T700/EP-A)复合材料表层树脂将发生老化降解,并且随自然老化时间的延长,T700/EP-A复合材料的玻璃化转变温度逐渐降低,未老化试样的玻璃化转变温度为207℃,经过自然老化处理3年后,其玻璃化转变温度降低为180℃,延长自然老化时间至5年时,其玻璃化转变温度进一步降低至172℃。而自然老化过程对复合材料力学性能可能同时存在着增强效应与损伤效应,因此造成了T700/EP-A与T700/EP-B复合材料的不同力学性能表现出相异的变化趋势。随自然老化时间延长,T700/EP-A与T700/EP-B复合材料纵向拉伸强度表现出先升高后降低的趋势,纵向弯曲强度表现出逐渐升高的趋势,纵向压缩强度与层间剪切强度存在波动,未呈现出明显变化。   相似文献   

13.
连续玄武岩纤维增强环氧树脂基复合材料抗冲击性能研究   总被引:1,自引:0,他引:1  
制备了连续玄武岩纤维增强的环氧树脂基复合材料靶板,并进行了抗冲击性能测试,研究了影响其抗冲击性能的主要因素及抗冲击机理.结果表明,表面处理会使复合材料抗冲击性能下降;而降低织物面密度、提高纤维体积含量可以使复合材料抗冲击性能得到提高.复合材料靶板的主要能量吸收形式为靶板局部变形、分层和纤维拉伸、剪切断裂及纤维拔脱.  相似文献   

14.
碳纤维/环氧树脂复合材料高速冲击性能   总被引:1,自引:0,他引:1  
采用树脂传递模塑(RTM)工艺制备碳纤维/环氧树脂复合材料,通过空气炮冲击实验研究树脂韧性和碳纤维类型对复合材料抗高速冲击性能的影响,并对高速冲击后的试样进行压缩性能测试,研究高速冲击损伤对复合材料剩余压缩性能的影响。结果表明:树脂的韧性可以降低复合材料遭受高速冲击时的内部损伤程度,大幅提高复合材料的抗高速冲击性能和冲击后剩余压缩性能;T700S碳纤维增强复合材料抗高速冲击性能优于T800H碳纤维增强复合材料;复合材料的破坏模式与冲击速率有关,冲击速率较低时,复合材料弹击面出现圆形凹坑,背弹面出现鼓包;冲击速率较高时,复合材料弹击面出现圆形通孔,背弹面出现沿纤维方向撕裂断口。  相似文献   

15.
通过对胺基化多壁碳纳米管(MWCNTs-NH2)进行改性,得到改性MWCNTs悬浮液(MWCNTs-NH2(M))。分别将羧基化MWCNTs (MWCNTs-COOH)和MWCNTs-NH2(M)分散在环氧树脂(EP)中,采用热熔法制备了多尺度MWCNTs-碳纤维(CF)/EP复合材料。研究了MWCNTs对EP模量、韧性及EP与CF之间界面黏结强度的影响,并分析了MWCNTs与CF上浆剂的作用,评价了多尺度MWCNTs-CF/EP复合材料的力学性能。结果表明:官能团化的MWCNTs可对EP的模量和韧性起到更好的增强作用。MWCNTs接枝的-COOH或-NH2可与CF上浆剂中的环氧基团发生化学反应,提高EP与CF之间的界面剪切强度。MWCNTs-NH2(M)对多尺度MWCNTs-CF/EP复合材料力学性能的增强效果优于MWCNTs-COOH,当MWCNTs-NH2(M)的含量为1wt%时,多尺度复合材料的0°压缩强度、90°压缩强度、弯曲强度、弯曲模量、冲击后压缩强度(CAI)分别提高了16.7%、16.3%、40.9%、30.3%、20.6%。  相似文献   

16.
采用正压过滤法制备了多壁碳纳米管(MWCNTs)网格(巴基纸),并采用真空辅助RTM工艺制备了MWCNTs网格/环氧树脂复合材料。通过SEM、FTIR、拉伸测试等对MWCNTs网格的微观形貌和性能进行了表征,并研究了MWCNTs网格/环氧复合材料的拉伸性。结果表明,所制备的功能化MWCNTs网格比较均匀,拉伸强度在22~32 MPa之间,拉伸模量约为1 GPa,相比未功能化处理的MWCNTs网格,强度最大提高了约167%。功能化MWCNTs网格/环氧树脂复合材料的拉伸强度和拉伸模量可达到152 MPa和6.48 GPa,相比空白环氧树脂提高了约1倍以上,拉伸试样断面SEM表明,环氧树脂对功能化MWCNTs网格的浸润效果良好,界面结合紧密,有效地提高了复合材料的力学性能。  相似文献   

17.
以酶解木质素(EHL)为原料,采用苯酚-硫酸法对其进行酚化改性,所得酚化木质素(PL)在碱性条件下,与环氧氯丙烷(ECH)合成木质素-环氧树脂(L-EP),利用FT-IR对产物进行表征。探讨单因素反应条件对酚化工艺的影响。结果表明:反应时间3.0h、反应温度95℃、2mol/L H_2SO_4用量为4mL/g时,木质素的酚化效果最佳,其酚羟基含量达到4.632mmol/g,较EHL提高42%。研究了不同L-EP添加量对L-EP/环氧E-51复合材料力学性能和热性能的影响。结果显示:L-EP的添加量为5%时,L-EP/环氧E-51复合材料的拉伸强度最好,较纯E-51提高26%;随着L-EP添加量的增加,L-EP/环氧E-51复合材料的热稳定性增强。采用非等温法分析环氧E-51和L-EP/环氧E-51复合材料的固化动力学,结果证明:L-EP对复合材料固化有一定的促进作用。  相似文献   

18.
针对环氧树脂脆性大、与碳纤维形成的界面性能较差等问题,本文选用纳米TiO2对5284环氧树脂进行改性,并以角联锁机织物为增强体制备了碳纤维/环氧树脂复合材料。使用FT-IR、旋转流变仪、表面张力仪等设备对TiO2/环氧树脂进行表征,并研究了树脂改性对复合材料压缩与层间剪切性能的影响。研究表明:TiO2的羟基与环氧树脂的环氧基和羟基发生了反应;经1wt.%TiO2改性的树脂复数黏度为0.066 Pa·s,纤维与树脂间接触角为28.85°,浸润效果较好;相较于未改性复合材料,树脂改性的复合材料纵向压缩强度与模量分别提高了7.46%和11.03%,横向压缩强度与模量分别提高了6.99%和4.96%,纵向、横向的剪切强度分别提高了6.88%和4.65%。TiO2改性环氧树脂提高了复合材料的承载能力,改善了界面结合强度。  相似文献   

19.
以短切碳纤维毡和环氧树脂为原材料制成复合材料,考察了该材料在单向拉伸载荷下的力阻响应。实验结果表明,该材料具有正力阻效应(拉应变引起材料的电阻增大)。其中,单层碳纤维毡/环氧树脂复合材料的力阻灵敏度可达13.9,但在加载过程中其电阻表现出逐渐衰减趋势;多层碳纤维毡/环氧树脂复合材料的力阻性能更为稳定,但随着层数的增加灵敏度逐渐降低,5层复合材料的力阻灵敏度下降到5.7。多层复合材料的立体导电网络是其稳定性提升和灵敏度下降的主要原因。将碳纤维毡/环氧树脂多层复合材料敷设在梁结构表面形成智能表层,利用其力阻性能实现了梁结构在循环载荷下的变形监测以及在单调载荷作用下损伤监测。  相似文献   

20.
以4,4’-二氨基二苯甲烷(DDM)为固化剂、双马来酰亚胺(BMI)和酚醛环氧树脂(F51)为基体、聚醚砜(PES)为增韧剂、硅烷偶联剂KH560功能化纳米SiO2(KH-SiO2)为改性剂,采用原位聚合法制备了KH-SiO2-PES/BMI-F51复合材料,并通过非等温DSC确定了复合材料的固化工艺及固化反应动力学。根据Kissinger方程和Ozawa方程求得体系的表观活化能分别为96.03 kJ/mol和99.18 kJ/mol。FTIR测试结果表明:KH-SiO2改性效果良好,不饱和双键和环氧基特征峰消失,BMI中C=C双键和F51中环氧基在DDM作用下参与了体系的固化反应。SEM结果表明:PES树脂和KH-SiO2含量适当时,PES树脂和KH-SiO2在树脂基体中分散均匀,断裂纹不规则杂乱发展,KH-SiO2-PES/BMI-F51复合材料呈韧性断裂。力学性能测试和热失重测试表明:当PES含量为4wt%,KH-SiO2含量为1.5wt%时,KH-SiO2-PES/BMI-F51复合材料的弯曲强度、弯曲模量和冲击强度分别为156.23 MPa、4.18 GPa和20.89 kJ/m2,较BMI-F51基体分别提高了49.7%、29.4%和82.8%;KH-SiO2-PES/BMI-F51复合材料的热分解温度为393.1℃,残重率为50%时,分解温度高达523.1℃,耐热性十分优异。KH-SiO2-PES/BMI-F51复合材料的力学性能和耐热性有了较大提高,为拓展F51及BMI的应用范围提供了一定的理论数据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号