首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the effect of chromospheric bombardment by an electron beam during solar flares. Using a semi-empirical flare model, we investigate energy balance at temperature minimum level and in the upper photosphere. We show that non-thermal hydrogen ionization (i.e., due to the electrons of the beam) leads to an increase of chromospheric hydrogen continuum emission, H population, and absorption of photospheric and chromospheric continuum radiation. So, the upper photosphere is radiatively heated by chromospheric continuum radiation produced by the beam. The effect of hydrogen ionization is an enhanced white-light emission both at chromospheric and photospheric level, due to Paschen and H continua emission, respectively. We then obtain white-light contrasts compatible with observations, obviously showing the link between white-light flares and atmospheric bombardment by electron beams.  相似文献   

2.
We derive an occurrence frequency for white-light flares (WLF) of 15.5 ± 4.5 yr?1 during a 2.6 year period following the maximum of solar cycle 21. This compares with a frequency 5–6 yr?1 derived by McIntosh and Donnelly (1972) during solar cycle 20. We find that the higher frequency of the more recently observed WLFs is due to the availability of patrol data at shorter wavelengths (λ ? 4000 Å), where the contrast of the flare emission is increased; the improved contrast has allowed less energetic (and hence more frequently occurring) events to be classified as WLFs. We find that sufficient conditions for the occurrence of a WLF are: active region magnetic class = delta; sunspot penumbra class = K, with spot group area ≥ 500 millionths of the solar hemisphere; 1–8 Å X-ray burst class ≥ X2.  相似文献   

3.
As one of the most violent activities in the solar atmosphere,white-light flares(WLFs)are generally known for their enhanced white-light(or continuum)emission,which primarily originates in the solar lower atmosphere.However,we know little about how white-light emission is produced.In this study,we aim to investigate the response of the continua at 3600?and 4250?and also the Hαand Lyαlines during WLFs modeled using radiative hydrodynamic simulations.We take non-thermal electron beams as the energy source for the WLFs in two different initial atmospheres and vary their parameters.Our results show that the model with non-thermal electron beam heating clearly shows enhancements in the continua at 3600?and 4250?as well as in the Hαand Lyαlines.A larger electron beam flux,a smaller spectral index,or an initial penumbral atmosphere leads to a stronger emission increase at 3600?,4250?and in the Hαline.The Lyαline,however,is more obviously enhanced in a quiet-Sun initial atmosphere with a larger electron beam spectral index.It is also notable that the continua at 3600?and 4250?and the Hαline exhibit a dimming at the start of heating and reach their peak emissions after the peak time of the heating function,while the Lyαline does not show such behaviors.These results can serve as a reference for the analysis of future WLF observations.  相似文献   

4.
We examine empirical atmospheric structures that are consistent with enhanced white-light continuum emission in solar flares. This continuum can be produced either by hydrogen bound-free emission in an enhanced region in the upper chromosphere, or by H- emission in an enhanced region around the temperature minimum. In the former case, weak Paschen jumps in the spectrum will be present, with the spectrum being dominated by a strong Balmer continuum, while in the latter case the spectrum exhibits a weaker, flat enhancement over the entire visible spectrum.We find that when proper account is taken of radiative backwarming processes, the two enhanced atmospheric regions above are not independent, in that irradiation by Balmer continuum photons from the upper chromosphere creates sufficient heating around the temperature minimum to account for the temperature enhancements there. Thus the problem of main phase white-light flare production reduces to one of creating temperature enhancements of order 104 K in the upper chromosphere; radiative backwarming then naturally accounts for the enhancements of order 100 K around the temperature minimum.Heating by electron and proton bombardment, and by XUV irradiation from above, are then considered as candidates for creating the necessary enhancements in the upper chromosphere. We find that electron bombardment can be ruled out, whereas bombardment by protons in the few-MeV energy range is a viable candidate, but one without strong observational support. The XUV irradiation hypothesis is examined by incorporating it self-consistently into the PANDORA radiative transfer algorithm used to construct the empirical model atmospheres; we find that the introduction of XUV radiation, with flux and spectrum appropriate to white-light flare events, does indeed produce sufficient radiative heating in the upper chromosphere to balance the radiative losses associated with the required temperature enhancements.In summary, we find that the radiative coupling of (i) the upper chromosphere and temperature minimum regions (through Balmer continuum photons) and (ii) the transition region and upper chromosphere (through XUV photons) can account for white-light emission in solar flares.Presidential Young Investigator.  相似文献   

5.
H. S. Hudson 《Solar physics》1972,24(2):414-428
Observations indicate that fast electrons in solar flares, which cause the hard X-ray burst and the impulsive microwave burst, lose energy predominantly by collisional processes. This requires a thick-target theory of the emission, for which the electron spectrum inferred from the X-ray spectrum becomes 1.5 powers steeper than in the usual thin-target theory.The low-energy end of this spectrum contains enough energy above about 5 keV to supply the white-light continuum emission occasionally observed in major flares. The penetration of the nonthermal electrons creates long-lived excess ionization which enhances the free-free and free-bound continuum in the heated medium. The emission will occur high above the photosphere at small optical depth in the visible continuum. Thus its spectrum will extend into the infrared and ultraviolet.  相似文献   

6.
We present spectral data for three white-light flares (WLFs) showing Balmer continuum at wavelengths 3700 Å. These flares also have a weaker continuum extending toward longer wavelengths, from which, in one flare where this continuum is sufficiently bright, we are able to identify a Paschen jump near 8500 Å. The presence of the latter suggests that the Paschen continuum may be a substantial contributor to the WLF continuum at visible wavelengths. We note the possibility, therefore, that the entire continuum of this particular flare may be dominated by H fb emission.In all three flares the head of the Balmer continuum, as well as the head of the Paschen continuum in the flare where it was identified, is advanced toward longer wavelengths as a result of the blending of the hydrogen emission lines of the respective series. The principal quantum number of the last resolvable line of the Balmer or Paschen series is approximately 16. The electron density, as measured from the halfwidths of the high Balmer lines in two of the flares, is approximately 5 × 1013 cm–3. Due to possible misplacements of the spectrograph slit, however, the electron density in the brightest kernels of the WLFs may not have been obtained.Operated by the Association of Universities for Research in Astronomy, Inc. under contract AST 78-17292 with the National Science Foundation.  相似文献   

7.
White-light flares are considered to be the most energetic flaring events that are observable in the optical broad-band continuum of the solar spectrum. They have not been commonly observed. Observations of white-light flares with sub-arcsecond resolution have been very rare. The continuous high resolution observations of Hinode provide a unique opportunity to systematically study the white-light flares with a spatial resolution around 0.2 arcsec. We surveyed all the flares above GOES magnitude C5.0 since the launch of Hinode in 2006 October. 13 of these kinds of flares were covered by the Hinode G-band observations. We analyzed the peak contrasts and equivalent areas (calculated via integrated excess emission contrast) of these flares as a function of the GOES X-ray flux, and found that the cut-off visibility is likely around M1 flares under the observing limit of Hinode. Many other observational and physical factors should affect the visibility of white-light flares; as the observing conditions are improved, smaller flares are likely to have detectable white-light emissions. We are cautious that this limiting visibility is an overestimate, because G-band observations contain emissions from the upper atmosphere.Among the 13 events analyzed, only the M8.7 flare of 2007 June 4 had near-simultaneous observations in both the G-band and the blue continuum. The blue continuum had a peak contrast of 94% vs. 175% in G-band for this event. The equivalent area in the blue continuum is an order of magnitude lower than that in the G-band. Very recently, Jess et al.studied a C2.0 flare with a peak contrast of 300% in the blue continuum. Compared to the events presented in this letter, that event is probably an unusual white-light flare: a very small kernel with a large contrast that can be detected in high resolution observations.  相似文献   

8.
The extent to which the early phases of solar-flare development can be accounted for by a simple high-temperature chromospheric explosion model is investigated without involving a particular energy source. A model is developed in which it is shown that a point explosion in the lower chromosphere can be treated as a virtually instantaneous release of energy throughout a volume of radius R 100 km, which subsequently expands as a classical hydrodynamic blast wave in which R~ t ( < 2/3). This model is in substantial agreement with areal growth-rate observations of disk flares. An explanation for the fact that limb-flare observations can imply > 2/3 is suggested by considering the effects of the large atmospheric density gradient in the lower chromosphere on an upward travelling shock wave.  相似文献   

9.
The magnetic nature of solar flares   总被引:3,自引:0,他引:3  
The main challenge for the theory of solar eruptions has been to understand two basic aspects of large flares. These are the cause of the flare itself and the nature of the morphological features which form during its evolution. Such features include separating ribbons of H emission joined by a rising arcade of soft x-ray loops, with hard x-ray emission at their summits and at their feet. Two major advances in our understanding of the theory of solar flares have recently occurred. The first is the realisation that a magnetohydrodynamic (MHD) catastrophe is probably responsible for the basic eruption and the second is that the eruption is likely to drive a reconnection process in the field lines stretched out by the eruption. The reconnection is responsible for the ribbons and the set of rising soft x-ray loops, and such a process is well supported by numerical experiments and detailed observations from the Japanese satellite Yohkoh. Magnetic energy conversion by reconnection in two dimensions is relatively well understood, but in three dimensions we are only starting to understand the complexity of the magnetic topology and the MHD dynamics which are involved. How the dynamics lead to particle acceleration is even less well understood. Particle acceleration in flares may in principle occur in a variety of ways, such as stochastic acceleration by MHD turbulence, acceleration by direct electric fields at the reconnection site, or diffusive shock acceleration at the different kinds of MHD shock waves that are produced during the flare. However, which of these processes is most important for producing the energetic particles that strike the solar surface remains a mystery. Received 2 January 2001 / Published online 17 July 2001  相似文献   

10.
The explosive phase of a flare can be defined by a simple photometric measurement of H film records of the flare development. Using the quantitative definition, improved correlations are found between the start of the explosive phase and the start of 10.7 cm radio bursts and Sudden Frequency Deviations compared to earlier correlations of the same data using visual estimates of the start of the explosive phase. Explosive development may be confined to only part of a flare.  相似文献   

11.
This study proposes as a working hypothesis that small white-light flares accompany all major (proton) flare events and suggests a new method for systematically finding these patches of white-light emission. The new technique consists of the time-wise application of the photographic cancellation method to detect small time-varying features around the time of the impulsive phase of a flare.  相似文献   

12.
A superposed epoch analysis of 1964–1970 solar flares shows a marked increase in flare occurrence within a day (13° of longitude) of (- +) solar sector boundaries as well as a local minimum in flare occurrence near (+ -)sector boundaries. This preference for (- +) boundaries is more noticeable for northern hemisphere flares, where these polarities match the Hale polarity law, but is not reversed in the south. Plage regions do not show such a preference.  相似文献   

13.
Observational properties of two white-light flares (WLFs), on June 15, 1991, and June 26, 1999, are presented and compared. This is of particular interest, because the former was one of the most intense flares of X-ray class X12, while the latter was a compact flare of class M2.3. Significant differences between some flare parameters (GOES class, Hα classification, the number of WLF kernels and their location in the sunspot group, the size and duration of the WLF emission, and the peak flux density of the microwave emission) have been found. However, both these events had approximately the same powers of the emission per unit area in continuum near 658.0 nm: E = 1.5 × 107 and 1.1. × 107 erg cm?2 s?1 nm?1. There is generally a good temporal coincidence between the microwave and hard X-ray emissions and the WLF emission during the impulsive phase, but the light curve of the WLF emission on June 26, 1999, shows a stronger correlation with the X-ray emission in the energy range 14–23 keV. Both flares can be classified by their spectral characteristics as type I white-light flares.  相似文献   

14.
The physical mechanisms associated with solar flares are reviewed. The relevance of flare mechanisms to other astrophysical phenomena is discussed. In this context, specific models of quasars and radio galaxies, Sco X-1 and gamma-ray bursts are examined.  相似文献   

15.
The calculations of Compton backscattering from the solar surface of flare X-rays performed by Tomblin (1972) are extended to higher energies. It is shown that the effect is even more pronounced in the 40 keV region and that it can lead to substantial corrections to the observed X-ray spectra.  相似文献   

16.
We compare the observed center-to-limb distribution of 86 white-light flares (WLFs) with calculated distributions derived from five flare models, each covering different heights, temperatures, and densities in the solar atmosphere. Considering the limited statistics and the possibility of selection effects in reporting WLFs, the following results may be considered tentative: (1) WLFs cannot be modeledsolely by high-altitude optically thin sources, by optically thin chromospheric sources, or by photospheric sources located less than 150 km above the 5000 = 1 level; (2) middle photospheric sources extending somewhat higher than 150 km provide the best fit to the observed center-to-limb distribution, and (3) middle photospheric sources not exceeding 150 km altitude combined with chromospheric or higher-altitude sources are acceptable. An important feature of this work is that the methods used in the analysis are entirely independent of spectral analysis; yet spectral analysis has provided evidence for both photospheric and chromospheric components in WLFs.Operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation. Partial support for the National Solar Observatory is provided by the USAF under a Memorandum of Understanding with the NSF.  相似文献   

17.
Peter A. Sturrock 《Solar physics》1989,121(1-2):387-397
This article focuses on two problems involved in the development of models of solar flares. The first concerns the mechanism responsible for eruptions, such as erupting filaments or coronal mass ejections, that are sometimes involved in the flare process. The concept of loss of equilibrium is considered and it is argued that the concept typically arises in thought-experiments that do not represent acceptable physical behavior of the solar atmosphere. It is proposed instead that such eruptions are probably caused by an instability of a plasma configuration. The instability may be purely MHD, or it may combine both MHD and resistive processes. The second problem concerns the mechanism of energy release of the impulsive (or gradual) phase. It is proposed that this phase of flares may be due to current interruption, as was originally proposed by Alfvén and Carlqvist. However, in order for this process to be viable, it seems necessary to change one's ideas about the heating and structure of the corona in ways that are outlined briefly.  相似文献   

18.
Z. B. Korobova 《Solar physics》1992,139(1):205-207
A white-light-flare (WLF) was recorded on March 27, 1991 at Tashkent. The WLF occurred at the penumbra of a large, complex sunspot group. The energy released by the WLF per unit time was 2.4 × 1028 erg s-1.  相似文献   

19.
Sütterlin  P.  Wiehr  E.  Stellmacher  G. 《Solar physics》1999,189(1):57-68
We have determined absolute continuum intensities and brightness temperatures of individual facular grains at a spatial resolution limited by the =50 cm aperture of the SVST on La Palma. A facular region at 57° was observed simultaneously in three narrow continuum windows at 450.5, 658.7, and 863.5 nm. We corrected for image degradation by the Earth's atmosphere using the speckle masking method. The brightness temperatures do not exactly follow the Planck law. The differences of T blueT red=220 K and T irT red=–42 K reflect the wavelength dependence of the continuum formation depth. The (red) temperatures of 250 facular grains show excesses between 250 and 450 K above their undisturbed neighborhood. The wavelength dependence of the relative intensity ratios C= [I fac/I phot] show a large scatter around mean values of C blue/C red=1.075 and C ir/C red=0.98. We determined the center-to-limb variation of the 863.5 nm continuum contrast for 0.17>cos>0.39 by measuring 270 grains in reconstructed facular images. The upper envelope of the data points increases linearly to 1.5 at cos=0.17. Application of the mean color dependence yields green contrasts up to C 550=1.7, which is far higher than previously observed values. The behaviour for cos>0.17 is estimated from (unreconstructed) frame-selected best images taken over a time interval of 7 hours. Six distinct facular regions clearly discernible during the whole time interval indicate a slight contrast decrease towards the extreme limb. The observed quantities are useful for an adjustment of model calculations and for a discrimination of competing models.  相似文献   

20.
E. Schatzman 《Solar physics》1967,1(3-4):411-419
Some ideas are developed concerning solar flares which have been presented earlier by the author (Schatzman, 1966a). Emphasis is laid on the problem of energy transport; from the energy supply to the region of the optical flare, on the storage of low energy cosmic ray particles in a magnetic bottle before the beginning of the optical flare, and the mechanism which triggers both the optical flare, and the production of high-energy cosmic rays. The relation between solar and stellar flares is considered.Lecture given at Goddard Space Flight Center, November 4, 1966.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号