首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了探讨微波-活性炭-Fenton试剂催化氧化体系处理焦化废水的最佳工艺条件,研究活性炭用量,H2O2用量,微波功率,微波辐射时间,废水pH值等不同因素对焦化废水COD去除效果的影响,再通过正交实验得出最佳处理条件.发现对50mL焦化废水,活性炭用量为0.4g,H2O2用量为3mL,微波功率为400W,微波辐射时间为5min,废水pH值为5时的COD去除效果最好.该条件下焦化废水COD去除率达85%以上.并由此初步建立了微波-活性炭-Fenton试剂催化氧化体系处理焦化废水的工艺.  相似文献   

2.
微波辅助催化氧化连续处理印染废水的实验研究   总被引:1,自引:0,他引:1  
利用活性炭具有很强的微波吸收能力,以其为催化剂,在通入空气和微波辐照条件下,进行了活性炭微波辅助催化氧化印染废水的动态连续性实验研究.实验结果表明:针对COD 1600mg/L、色度50000倍的印染废水,在优化参数条件:微波功率494W,进水流量8.3mL/min和供气流量120mL/min下,经活性炭微波辅助催化氧化处理后印染废水的CODcr去除率98%,色度去除率99%,实验出水效果稳定.  相似文献   

3.
采用非均相催化氧化处理苯胺模拟水,通过考察苯胺催化氧化前后紫外吸收曲线及CODCr的变化,对苯胺的催化氧化机理进行了初步的探讨分析;考察了反应时间、氧化剂投加量、pH、废水起始质量浓度等因素对废水CODCr去除效果的影响,确定了最佳工艺条件.在最佳工艺条件下,CODCr的去除率均达到97%以上.  相似文献   

4.
为达到采用微波诱导氧化工艺(MIOP)处理北系染料废水的目的,分别考察了活性炭种类、活性炭用量、微波辐射时间、微波功率、H2O2用量和pH值等因素对处理效果的影响.结果表明,6 g活性炭与50 mL北系废水混合,在微波功率为480?W,辐射时间6 min,H2O2用量2.0 mL,FeSO4用量0.07 g,pH=3的条件下,对废水COD的去除率达到98.95%.微波诱导氧化、活性炭吸附和单独微波辐射3种不同工艺的对比实验表明,微波诱导氧化有明显的优越性,且不会对环境造成二次污染.动力学研究表明,该氧化过程符合一级动力学规律,反应速率常数K=0.086 min-1,反应半衰期t1/2=8.06 min.  相似文献   

5.
目的研究UV/Fenton氧化法中各个因素对去除水中苯酚的影响,确定UV/Fenton法处理苯酚废水的工艺条件.方法保持UV/Fenton体系的基准条件不变,通过改变H2O2投加量、Fe2+浓度、废水初始pH值、载气等试验条件,考查这些因素对UV/Fenton法处理苯酚废水效果的影响.结果UV/Fenton氧化法对苯酚废水有较好的去除效果和较高的反应速率.当废水初始pH值为3.0时,经30 min反应,苯酚去除率达到99%,COD去除率达到86%.苯酚废水COD去除率滞后于苯酚去除率.结论UV/Fenton法能够在较短的时间内去除苯酚含量,COD、H2O2投加量、Fe2+浓度对处理效果影响较大,H2O2投加量决定苯酚去除率和COD去除率,而Fe2+质量浓度是影响去除速率的主导因素.  相似文献   

6.
微波诱导氧化处理直接蓝染料废水的研究   总被引:2,自引:0,他引:2  
采用微波诱导氧化工艺(MIOP)处理直接蓝染料废水,用实验方法分别考察了活性炭种类、活性炭用量、微波辐射时间、微波功率、H2O2用量和pH值等因素对处理效果的影响.结果表明,5 g活性炭与50 mL直接蓝废水混合(固液比为1∶10),在微波功率为480 W,辐射时间6 min,H2O2用量2.0 mL,pH=3的条件下,对废水COD的去除率达到97.4%.动力学研究表明,该氧化过程符合一级动力学规律,反应速率常数K=0.088 min-1,反应半衰期t1/2=7.88 min.MIOP有望在废水处理中得到广泛应用.  相似文献   

7.
通过对微波协同二次负载改性活性炭工艺处理模拟印染废水的研究及在微波连续流中的初步应用,为下一步该工艺应用于微波连续流反应器中提供理论依据.主要考察了改性活性炭的投加量、微波辐照时间、微波功率、废水pH和废水初始质量浓度的变化对处理效果的影响.结果表明:色度的去除率随改性活性炭的投加量增加而增加,随微波时间增长而增加,随微波功率的上升而增加;对TOC的去除率总体维持在80%左右;脱氮率随着条件的变化有增有减;除磷效果在碱性条件下明显优于在酸性条件下.该工艺用于连续流中效果良好,TOC和色度去除率达75%.  相似文献   

8.
采用微波辐射技术对造纸工业废水进行处理研究.以FeSO4负载炉渣为吸波催化载体,微波辐射处理造纸废水,可有效降解其有机污染物.炉渣微波活化活性优于普通炉活化.正交优化实验得到微波处理最优条件为:负载型炉渣用量为28 g、微波辐射时间为17 min、微波功率为800 W,最优条件下COD去除率可达95%.活化炉渣重复使用,COD去除率明显下降,炉渣破损是效率下降的主要原因.  相似文献   

9.
微波诱导过氧化氢氧化处理含油废水   总被引:1,自引:0,他引:1  
采用微波诱导氧化工艺(MIOP)处理含油废水,分别考察了活性炭种类、活性炭质量、H2O2体积、微波功率、微波辐射时间和pH等因素对处理效果的影响。实验结果表明,微波诱导氧化对含油废水COD的去除率达到86.8%。最佳处理工艺条件为:5 g活性炭与50 mL含油废水混合(固液质量比为1∶10),微波功率为480 W,辐射时间为4 min,H2O2体积为1.5 mL,FeSO4质量为0.07 g,pH为3。  相似文献   

10.
常温下以ZnSO4·7H2O,NaOH和PEG-400(聚乙二醇400)为原料,采用直接沉淀法制备纳米ZnO,并以自制纳米ZnO为光催化剂处理含镉废水.考察催化剂的投加量,光照时间,pH值,重金属离子初始质量浓度等因素对模拟废水中镉离子去除率的影响.实验结果表明:纳米ZnO粉体的光催化效果好,紫外光激发下在处理含镉废水的试验中显示出较高的去除效率.纳米ZnO光催化处理含镉废水的效果受废水pH值、废水负荷、纳米ZnO投加量以及不同光照时间等因素的影响,各因素对光催化效果影响的次序为:废水质量浓度纳米ZnO投加量光照时间溶液pH值.正交试验确定纳米ZnO光催化处理含镉废水的优化条件为:pH值为9,搅拌时间为2.5 h,模拟废水质量浓度为20 mg/L,ZnO的用量为3 g/L,在此条件下镉的去除率为88.26%.  相似文献   

11.
二氧化氯催化氧化处理萘酚绿模拟废水的实验研究   总被引:1,自引:0,他引:1  
研究了利用二氧化氯直接氧化和催化氧化处理萘酚绿模拟废水,单纯用二氧化氯化学氧化处理COD为1533?mg/L的萘酚绿废水时,最佳pH值为1.2,二氧化氯投加量为1500?mg/L,反应60?min,COD去除率为45.3%,BOD5去除率为11.2%,脱色率为92.5%.在最佳pH值为1.2,经过1500?mg/L二氧化氯和0.25?g TiO2催化氧化60?min后,COD去除率为52.5%,BOD5去除率为48.1%,脱色率为96.4%.结果表明,萘酚绿经化学氧化和催化氧化后,分子中萘环被氧化降解为羧酸和萘醌,并进一步降解为无机物,提高了废水的可生化性,为难降解废水的后续处理创造了条件.  相似文献   

12.
将微波与催化湿式氧化技术相结合,以载铜活性炭为催化剂,间歇式处理高浓度对硝基酚废水.实验结果表明,对于初始浓度为1000mg·L-1的高浓度对硝基酚废水,最佳反应条件为固液比1∶1、空气量160mL·min-1和微波功率234W.在最佳条件下,废水中对硝基酚去除率为75%.气质谱分析对硝基酚中间降解产物为苯酚和羟基氧化物等.  相似文献   

13.
为了解决石灰法处理甲醛废水产污量多、管道易结垢及出水色度高等问题,采用锰砂/H2O2/O3催化氧化体系对某药业公司高浓度甲醛废水进行中试研究,考查影响催化效果的反应条件。结果表明:在臭氧量为100 g/h、pH=5、反应时间为2 h、双氧水投加量为0.30%、反应温度为40℃、锰砂投加量为容器体积的60%条件下,处理效果达到最佳,甲醛去除率可达87.3%,化学需氧量去除率可达60.0%,色度去除率可达95.0%。该体系利用锰砂和双氧水联合催化臭氧氧化处理甲醛废水,降低有机污染物的含量,具有氧化效率高、操作简便、无二次污染等优点,以期为高浓度甲醛废水处理提供参考。  相似文献   

14.
电催化氧化法处理难降解有机废水   总被引:6,自引:0,他引:6  
采用电催化氧化法对高浓度含酚废水进行处理,考察了pH值、温度、电压、NaCl的投加量等因素对酚去除率、COD去除率的影响.结果表明,这种方法能有效去除废水中的酚和COD,特别是电压、Na-Cl的投加量这两个因素对酚和COD的去除率影响较大.采用了两种复合电催化氧化法处理含酚废水,一种是直接投加H2O2,结果表明酚去除率可达95%以上;另一种是加浓H2SO4,在适宜条件下,酚去除率可达90%以上.由此得出,对含难降解有机物废水的处理,电催化氧化法能达到满意的效果.  相似文献   

15.
二氧化氯催化氧化处理铬黑T模拟废水的实验   总被引:2,自引:2,他引:2  
研究了利用二氧化氯直接氧化和催化氧化处理铬黑T模拟废水,单纯用二氧化氯化学氧化处理COD为2928mg/L的铬黑T废水时,最佳pH值为1.8,二氧化氯投加量为1200mg/L,反应60min,COD去除率为24.1%,BOD5去除率为21.8%,脱色率为70.0%.在最佳pH值为1.8,经过1200mg/L二氧化氯和0.25g TiO2催化氧化60min后,COD去除率为33.6%,BOD5去除率为53.2%,脱色率为75.2%.结果表明,铬黑T经化学氧化和催化氧化后,分子中苯环和萘环被氧化分解为羧酸和苯醌,并进一步分解为无机物,为难降解废水的后续处理创造了条件.  相似文献   

16.
实验在单因素条件下研究了微波功率、微波辐射时间、溶液pH值对洗煤废水处理效果的影响.采用正交实验确定了它们的最佳组合为:微波功率640 W,微波辐射时间4 min,溶液pH值6,在此条件下洗煤废水中CODcr去除率达到93.2%,出水浓度降至102 mg/L,达到国家二级排放标准,同时对微波高效处理洗煤废水的机理进行了探讨.  相似文献   

17.
微波诱导催化氧化法降解溴氨酸水溶液影响因素研究   总被引:1,自引:0,他引:1  
采用微波诱导催化氧化工艺对溴氨酸水溶液的降解进行了初步研究,考察了H2O2投加量、溴氨酸水溶液初始浓度、催化剂投加量、微波辐照功率及微波辐照时间等因素对溴氨酸降解效果的影响.实验结果表明:加入9 g改性氧化铝催化剂于100 mL浓度为400 mg/L溴氨酸水溶液中,在微波功率为640 W,辐照时间为1 min,H2O2用量为4 mL的条件下,溴氨酸水溶液的脱色率达92.3%,CODCr去除率达87.7%.  相似文献   

18.
干法腈纶废水中SO32-的空气催化氧化性能研究   总被引:3,自引:0,他引:3  
对干法腈纶废水中SO2 -3 进行了直接空气氧化和空气催化氧化处理的对比试验 ,并研究了直接空气氧化、加入不同剂量Mn金属离子均相催化剂对腈纶废水中SO2 -3 去除率的影响。研究结果表明 ,当水温 80℃ ,空气流量为 0 .4L/min(压力 0 .2MPa) ,空气催化氧化处理与直接空气氧化处理对比 ,显著提高了对SO2 -3 的去除率 ,缩短了反应时间 ,使腈纶废水中的SO2 -3 浓度得到大幅度的降低。同时 ,催化氧化处理中 ,SO2 -3 去除率与Mn金属均相催化剂投加量、氧化反应时间之间存在着一定的相关性。增加催化剂投加量、延长氧化反应时间都将提高SO2 -3的去除率 ,但催化剂投加量增加到 6 0mg/L以上对进一步缩短反应时间和提高SO2 -3 去除率的效果并不明显。作为干法腈纶生产废水预处理措施 ,在Mn金属离子均相催化剂投加量为 4 0mg/L ,80min氧化反应时间就能得到很好的处理效果  相似文献   

19.
活性炭-微波辐射深度处理焦化废水   总被引:16,自引:0,他引:16  
在活性炭存在条件下,采用微波辐射对焦化废水生化处理系统的外排水进行深度处理.考察活性炭用量、废水pH值、微波辐射时间和微波功率对废水COD去除率的影响.结果表明,采用3 g颗粒活性炭与50 mL焦化废水混合,在微波辐射功率为700 W,辐射处理6 m in的条件下,废水的COD去除率达77%.动力学研究表明,该反应过程近似一级反应动力学规律,反应速率常数为4.8×1-0 3-s 1.  相似文献   

20.
Fenton试剂+活性炭吸附处理焦化废水的试验研究   总被引:1,自引:0,他引:1  
探讨Fenton氧化阶段H2O2投加量、Fe2+投加量、初始pH值、反应时间和温度,以及吸附阶段吸附剂投加量和pH值等因素,对焦化废水COD、氨氮、色度去除率的影响,确定了最佳处理条件.结果表明:Fenton氧化+活性炭处理方法处理焦化废水具有良好效果,COD、氨氮和色度的去除率分别达97.74%,83.76%,97.33%,该试验结果为实际工艺处理焦化废水提供了实验依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号