首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对高动态红外图像位压缩和细节增强过程中的噪声放大、微小细节增强不足以及 强边缘过度增强等问题,提出一种基于双导向滤波的细节增强与去噪算法。用导向滤波分别获得 两组基图和细节图,低 ε 参数基图作为去噪基图的估计;低 ε 参数与高 ε 参数细节图之差作为去 噪细节图的估计;两图分别经过自动增益控制和位压缩后,合成为增强去噪图像。为准确估计参 数,提出一种基于细节图像素灰度值变化规律统计的优化模型,分类考察像素灰度值收敛特性后 给出参数取值范围。仿真结果表明,该算法能够准确选择关键参数,在增强细节和抑制噪声的同 时,平衡微小细节和强边缘增强效果,并具有准实时性、模型简单和控制参数较少等特点。  相似文献   

2.
传统的低动态范围显示设备不能很好地表现高动态范围图像信息,针对这一问题,提出一种基于引导滤波的Retinex多尺度分解色调映射算法。该算法使用引导滤波对光照信息进行估计,将高动态范围图像的亮度分为光照层和反射层;然后对反射层分量进行多尺度分解,得到一系列细节层和一个基本层,将细节层和基本层进行合并和色彩还原;最后得到色调映射后的图像。实验结果表明,该算法可以较好地还原真实场景信息,映射后图像的细节和对比度较好,色彩鲜艳。  相似文献   

3.
一种亮度可控与细节保持的高动态范围图像色调映射方法   总被引:2,自引:0,他引:2  
高动态范围(High dynamic range, HDR)图像通常需压缩其动态范围,以便于进行存储、传输、重现. 本文提出一种具有亮度可控与细节保持特性的HDR图像的全局色调映射方法.该方法对HDR图像 照度直方图进行裁剪与补偿,令色调映射后的低动态范围(Low dynamic range, LDR)图像仍能够保持原有的细节特性, 同时利用概率模型估算出输出LDR图像的亮度与标准差,进而调整直方图亮度区域的分配, 使得输出LDR图像的亮度接近用户设置的亮度,最后以分段直方图均衡的方法进行HDR色调映射处理. 仿真结果表明,该方法能对HDR图像动态范围进行合理的压缩映射,输出的LDR图像的亮度可由用户控制或自适应选择, 同时能保持图像的细节信息,令图像的主观视觉感受对比和谐.  相似文献   

4.
This paper investigates contrast enhancement as an approach to tone reduction, aiming to convert a photograph to black and white. Using a filter‐based approach to strengthen contrast, we avoid making a hard decision about how to assign tones to segmented regions. Our method is inspired by sticks filtering, used to enhance medical images but not previously used in non‐photorealistic rendering. We amplify contrast of pixels along the direction of greatest local difference from the mean, strengthening even weak features if they are most prominent. A final thresholding step converts the contrast‐enhanced image to black and white. Local smoothing and contrast enhancement balances abstraction and structure preservation; the main advantage of our method is its faithful depiction of image detail. Our method can create a set of effects: line drawing, hatching, and black and white, all having superior details to previous black and white methods.  相似文献   

5.
色调映射可将高动态范围图像显示在低动态范围显示器上。常用的对数全局色调映射算法由于压缩范围有限容易引起细节丢失,为此本文给出一种基于亮度分区的自适应对数色调映射算法。首先将高动态范围图像由RGB颜色空间转换为XYZ颜色空间以提取图像亮度信息,然后将亮度图分为高、中、低三个照度区域。根据区域亮度属性实施对数色调映射实现动态范围局部压缩,并进行融合处理以消除区域交界处的显示效果。同时采用双边滤波技术进行细节补偿。实验结果表明,此算法能有效压缩动态范围并再现真实场景信息,同时可以保留丰富的细节。  相似文献   

6.
针对高动态范围图像在传统输出设备上的显示问题,给出一个基于非局部均值滤波的多尺度色调映射算法。该算法使用非局部均值滤波对高动态范围图像进行粗化,将图像分解为一个包含大尺度变化的基本层和多个具有小尺度特征的细节层,对基本层和细节层分别进行调整,进行色彩还原。实验结果表明,与双边滤波等算法相比,该算法在较好还原真实场景的同时,不仅避免了光晕现象,也保留更丰富的细节信息。  相似文献   

7.
We propose an efficient and robust image‐space denoising method for noisy images generated by Monte Carlo ray tracing methods. Our method is based on two new concepts: virtual flash images and homogeneous pixels. Inspired by recent developments in flash photography, virtual flash images emulate photographs taken with a flash, to capture various features of rendered images without taking additional samples. Using a virtual flash image as an edge‐stopping function, our method can preserve image features that were not captured well only by existing edge‐stopping functions such as normals and depth values. While denoising each pixel, we consider only homogeneous pixels—pixels that are statistically equivalent to each other. This makes it possible to define a stochastic error bound of our method, and this bound goes to zero as the number of ray samples goes to infinity, irrespective of denoising parameters. To highlight the benefits of our method, we apply our method to two Monte Carlo ray tracing methods, photon mapping and path tracing, with various input scenes. We demonstrate that using virtual flash images and homogeneous pixels with a standard denoising method outperforms state‐of‐the‐art image‐space denoising methods.  相似文献   

8.
In this paper, we present an interactive high dynamic range volume visualization framework (HDR VolVis) for visualizing volumetric data with both high spatial and intensity resolutions. Volumes with high dynamic range values require high precision computing during the rendering process to preserve data precision. Furthermore, it is desirable to render high resolution volumes with low opacity values to reveal detailed internal structures, which also requires high precision compositing. High precision rendering will result in a high precision intermediate image (also known as high dynamic range image). Simply rounding up pixel values to regular display scales will result in loss of computed details. Our method performs high precision compositing followed by dynamic tone mapping to preserve details on regular display devices. Rendering high precision volume data requires corresponding resolution in the transfer function. To assist the users in designing a high resolution transfer function on a limited resolution display device, we propose a novel transfer function specification interface with nonlinear magnification of the density range and logarithmic scaling of the color/opacity range. By leveraging modern commodity graphics hardware, multiresolution rendering techniques and out-of-core acceleration, our system can effectively produce an interactive visualization of large volume data, such as 2.048/sup 3/.  相似文献   

9.
图像的边缘信息和对比度是影响人体视觉的最主要因素。提出一种能够同时保持边缘特征和增强对比度的图像缩放新方法。通过边缘检测算法、边缘梯度增强以及梯度图的低通滤波算法,得到新的梯度图,再通过求解泊松方程得到重建的图像。由于对图像边缘作了特殊处理,从而避免在图像缩放过程中丢失边缘信息。该方法可以同时保持特征以及增加图像的对比度,从而更好地展现图像的细节。实验结果表明,本文方法能应用于一般图像和医学图像的缩放和增强等应用中。  相似文献   

10.
We present a tone reproduction operator that preserves visibility in high dynamic range scenes. Our method introduces a new histogram adjustment technique, based on the population of local adaptation luminances in a scene. To match subjective viewing experience, the method incorporates models for human contrast sensitivity, glare, spatial acuity, and color sensitivity. We compare our results to previous work and present examples of our techniques applied to lighting simulation and electronic photography  相似文献   

11.
Many tone mapping algorithms have been proposed based on the studies in Human Visual System; however, they rarely addressed the effects of attention to contrast response. As attention plays an important role in human visual system, we proposed a local tone mapping method that respects both attention and adaptation effects. We adopt the High Dynamic Range (HDR) saliency map to compute an attention map, which predicts the attentive regions and nonattentative regions in an HDR image. The attention map is then used to locally adjust the contrast of the HDR image according to attention and adaptation models found in psychophysics. We applied our tone mapping approach to HDR images and videos and compared with the results generated by three state-of-the-art tone mapping algorithms. Our experiments show that our approach produces results with better image quality in terms of preserving details and chromaticity of visual saliency.  相似文献   

12.
Guo  Yuanhao  Zhao  Rongkai  Wu  Song  Wang  Chao 《Multimedia Tools and Applications》2018,77(17):22299-22318

Panoramic photography requires intensive operations of image stitching. A large quantity of images may lead to a rather expensive image stitching; while a sparse imaging may cause a poor-quality panorama due to the insufficient correlation between adjacent images. So, a good study for the balance between image quantity and image correlation may improve the efficiency and quality of panoramic photography. Therefore, in this work, we are motivated to present a novel approach to estimate the optimal image capture patterns for panoramic photography. We aim at the minimization of the image quantity which still preserves sufficient image correlation. We represent the image correlation as overlap area between the view range that can be separately observed from adjacent images. Moreover, a time-consuming imaging process of panoramic photography will result in a considerable illumination variation of the scene in images. Subsequently, the image stitching will be more challenged. To solve this problem, we design a series of imaging routines for our image capture patterns to preserve the content consistency, ensuring the generalization of our method to various cameras. Experimental results show that the proposed method can obtain the optimal image capture pattern in a very efficient manner. In these patterns, we can obtain a balanced image quantity but still achieve good results of panoramic photography.

  相似文献   

13.
We present a set of techniques for the synthesis of artificial images that depict branching structures like rivers, cracks, lightning, mountain ranges, or blood vessels. The central idea is to build a statistical model that captures the characteristic bending and branching structure from example images. Then a new skeleton structure is synthesized and the final output image is composed from image fragments of the original input images. The synthesis part of our algorithm runs mostly automatic but it optionally allows the user to control the process in order to achieve a specific result. The combination of the statistical bending and branching model with sophisticated fragment‐based image synthesis corresponds to a multi‐resolution decomposition of the underlying branching structure into the low frequency behavior (captured by the statistical model) and the high frequency detail (captured by the image detail in the fragments). This approach allows for the synthesis of realistic branching structures, while at the same time preserving important textural details from the original image.  相似文献   

14.
In this paper, we explore a novel idea of using high dynamic range (HDR) technology for uncertainty visualization. We focus on scalar volumetric data sets where every data point is associated with scalar uncertainty. We design a transfer function that maps each data point to a color in HDR space. The luminance component of the color is exploited to capture uncertainty. We modify existing tone mapping techniques and suitably integrate them with volume ray casting to obtain a low dynamic range (LDR) image. The resulting image is displayed on a conventional 8-bits-per-channel display device. The usage of HDR mapping reveals fine details in uncertainty distribution and enables the users to interactively study the data in the context of corresponding uncertainty information. We demonstrate the utility of our method and evaluate the results using data sets from ocean modeling.  相似文献   

15.
This paper proposes a new approach for color transfer between two images. Our method is unique in its consideration of the scene illumination and the constraint that the mapped image must be within the color gamut of the target image. Specifically, our approach first performs a white‐balance step on both images to remove color casts caused by different illuminations in the source and target image. We then align each image to share the same ‘white axis’ and perform a gradient preserving histogram matching technique along this axis to match the tone distribution between the two images. We show that this illuminant‐aware strategy gives a better result than directly working with the original source and target image's luminance channel as done by many previous methods. Afterwards, our method performs a full gamut‐based mapping technique rather than processing each channel separately. This guarantees that the colors of our transferred image lie within the target gamut. Our experimental results show that this combined illuminant‐aware and gamut‐based strategy produces more compelling results than previous methods. We detail our approach and demonstrate its effectiveness on a number of examples.  相似文献   

16.
Smart deformation and warping tools play an important part in modern day geometric modeling systems. They allow existing content to be stretched or scaled while preserving visually salient information. To date, these techniques have primarily focused on preserving local shape details, not taking into account important global structures such as symmetry and line features. In this work we present a novel framework that can be used to preserve the global structure in images and vector art. Such structures include symmetries and the spatial relations in shapes and line features in an image. Central to our method is a new formulation of preserving structure as an optimization problem. We use novel optimization strategies to achieve the interactive performance required by modern day modeling applications. We demonstrate the effectiveness of our framework by performing structure preservation deformation of images and complex vector art at interactive rates.  相似文献   

17.
一种基于细节层分离的单曝光HDR图像生成算法   总被引:1,自引:1,他引:0  
张红英  朱恩弘  吴亚东 《自动化学报》2019,45(11):2159-2170
针对利用单幅低动态范围(Low dynamic range,LDR)图像生成高动态范围(High dynamic range,HDR)图像细节信息不足的问题,本文提出了一种基于细节层分离的单曝光HDR图像生成算法.该算法基于人类视觉系统模型,首先分别提取出LDR图像的亮度分量和色度分量,对伽马校正后的亮度分量进行双边滤波,提取出亮度分量的基本层,再对基本层和亮度分量进行遍历运算,得到亮度分量的细节层;然后,构造反色调映射函数,分别对细节层和伽马校正后的亮度图像进行扩展,得到各自的反色调映图像;之后,将反色调映射后亮度分量与压缩后的细节层进行融合,得到新的亮度分量.最后,融合色度分量与新的亮度分量,并对融合后图像进行去噪,得到最终的HDR图像.实验表明该算法能挖掘出部分隐藏的图像细节信息,处理效果较好,运行效率高,具有较好的鲁棒性.  相似文献   

18.
An ASCII art is a matrix of ASCII code characters that reproduces an original grey-scale image. A JIS art is an ASCII art that uses JIS Kanji code characters instead of ASCII code characters. They are commonly used to represent pseudo grey-scale images in text -based messages. Since automatic generation of high quality ASCII/JIS art images is very hard, they are usually produced by hand. The main contribution of this paper is to propose a new technique to generate an ASCII/JIS art that reproduces the original tone and the details of an input grey-scale image. Our new technique is inspired by the local exhaustive search (LES) to optimise binary images for printing based on the characteristic of the human visual system. Although it can generate high quality ASCII/JIS art images, a lot of computing time is necessary for the LES. Hence, we have implemented our new technique in a graphics processing unit (GPU) to accelerate the computation. The experimental results show that the GPU implementation can achieve a speedup factor up to 89.56 over the conventional CPU implementation.  相似文献   

19.
目的 曝光融合算法,即将多幅不同曝光时间的图像融合得到一幅曝光度良好的图像,可能在最终的输出图像中引入光晕伪影、边缘模糊和细节丢失等问题。针对曝光融合过程中存在的上述问题,本文从细节增强原理出发提出了一种全细节增强的曝光融合算法。方法 在分析了光晕现象产生原因的基础上,从聚合的新角度对经典引导滤波进行改进,明显改善引导滤波器的保边特性,从而有效去除或减小光晕;用该改进引导滤波器提取不同曝光图像的细节信息,并依据曝光良好度将多幅细节图融合得到拍摄场景的全细节信息;将提取、融合得到的全细节信息整合到由经典曝光融合算法得到的初步融合图像上,最终输出一幅全细节增强后的融合图像。结果 实验选取17组多曝光高质量图像作为输入图像序列,本文算法相较于其他算法得到的融合图像边缘保持较好,融合自然;从客观指标看,本文算法在信息熵、互信息与平均梯度等指标上都较其他融合算法有所提升。以本文17组图像的平均结果来看,本文算法相较于经典的拉普拉斯金字塔融合算法在信息熵上提升了14.13%,在互信息熵上提升了0.03%,在平均梯度上提升了16.45%。结论 提出的全细节增强的曝光融合算法将加权聚合引导滤波用于计算多曝光序列图像的细节信息,并将该细节信息融合到经典曝光融合算法所得到的一幅中间图像之上,从而得到最终的融合图像。本文的处理方法使最终融合图像包含更多细节,降低或避免了光晕及梯度翻转等现象,且最终输出图像的视觉效果更加优秀。  相似文献   

20.
In this work we detail a method that leverages the two color heads of recent low‐end fused deposition modeling (FDM) 3D printers to produce continuous tone imagery. The challenge behind producing such two‐tone imagery is how to finely interleave the two colors while minimizing the switching between print heads, making each color printed span as long and continuous as possible to avoid artifacts associated with printing short segments. The key insight behind our work is that by applying small geometric offsets, tone can be varied without the need to switch color print heads within a single layer. We can now effectively print (two‐tone) texture mapped models capturing both geometric and color information in our output 3D prints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号