首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This study determines levels of regulatory T cells (Tregs), naive Tregs, immune activation and cytokine patterns in 15 adult human immunodeficiency virus (HIV)‐infected patients receiving prolonged highly active anti‐retroviral therapy (HAART) who have known thymic output, and explores if naive Tregs may represent recent thymic emigrant Tregs. HIV‐infected patients treated with HAART with a median of 1 and 5 years were compared with healthy controls. Percentages of Tregs (CD3+CD4+CD25+CD127low), naive Tregs (CD3+CD4+CD25+CD45RA+) and activation markers (CD38+human leucocyte antigen D‐related) were determined by flow cytometry. Forkhead box P3 mRNA expression and T cell receptor excision circles (TREC) content in CD4+ cells were determined by polymerase chain reaction and cytokines analysed with Luminex technology. Levels of Tregs were significantly higher in HIV‐infected patients compared with controls, both after 1 and 5 years of HAART (P < 0·001), despite fully suppressed HIV‐RNA and normalization of both CD4 counts, immune activation and cytokine patterns. Furthermore, levels of naive Tregs were elevated significantly in HIV‐infected patients (P < 0·001) and were associated with thymic output measured as the TREC frequency in CD4+ cells (P = 0·038). In summary, Treg levels in HIV‐infected patients are elevated even after 5 years of HAART. Increased thymic production of naive Tregs may contribute to higher Treg levels in HIV‐infection.  相似文献   

2.
Although CD4+/CD25+ T regulatory cells (Tregs) are a potentially powerful tool in bone marrow transplantation, a prerequisite for clinical use is a cell‐separation strategy complying with good manufacturing practice guidelines. We isolated Tregs from standard leukapheresis products using double‐negative selection (anti‐CD8 and anti‐CD19 monoclonal antibodies) followed by positive selection (anti‐CD25 monoclonal antibody). The final cell fraction (CD4+/CD25+) showed a mean purity of 93·6% ± 1·1. Recovery efficiency was 81·52% ± 7·4. The CD4+/CD25+bright cells were 28·4% ± 6·8. The CD4+/CD25+ fraction contained a mean of 51·9% ± 15·1 FoxP3 cells and a mean of 18·9% ± 11·5 CD127 cells. Increased FoxP3 and depleted CD127 mRNAs in CD4+CD25+FoxP3+ cells were in line with flow cytometric results. In Vβ spectratyping the complexity scores of CD4+/CD25+ cells and CD4+/CD25 cells were not significantly different, indicating that Tregs had a broad T cell receptor repertoire. The inhibition assay showed that CD4+/CD25+ cells inhibited CD4+/CD25 cells in a dose‐dependent manner (mean inhibition percentages: 72·4 ± 8·9 [ratio of T responder (Tresp) to Tregs, 1:2]; 60·8% ± 20·5 (ratio of Tresp to Tregs, 1:1); 25·6 ± 19·6 (ratio of Tresp to Tregs, 1:0·1)). Our study shows that negative/positive Treg selection, performed using the CliniMACS device and reagents, enriches significantly CD4+CD25+FoxP3+ cells endowed with immunosuppressive capacities. The CD4+CD25+FoxP3+ population is a source of natural Treg cells that are depleted of CD8+ and CD4+/CD25 reacting clones which are potentially responsible for triggering graft‐versus‐host disease (GvHD). Cells isolated by means of this approach might be used in allogeneic haematopoietic cell transplantation to facilitate engraftment and reduce the incidence and severity of GvHD without abrogating the potential graft‐versus‐tumour effect.  相似文献   

3.
Although regulatory T‐cells (Tregs) have been shown to be expanded in acute dengue, their role in pathogenesis and their relationship to clinical disease severity and extent of viraemia have not been fully evaluated. The frequency of Tregs was assessed in 56 adult patients with acute dengue by determining the proportion of forkhead box protein 3 (FoxP3) expressing CD4CD25+T‐cells (FoxP3+ cells). Dengue virus (DENV) viral loads were measured by quantitative real‐time polymerase chain reaction (PCR) and DENV‐specific T‐cell responses were measured by ex‐vivo interferon (IFN)‐γ enzyme‐linked immunospot (ELISPOT) assays to overlapping peptide pools of DENV‐NS3, NS1 and NS5. CD45RA and CCR4 were used to phenotype different subsets of T‐cells and their suppressive potential was assessed by their expression of cytotoxic T lymphocyte‐antigen 4 (CTLA‐4) and Fas. While the frequency of FoxP3+ cells in patients was significantly higher (P < 0·0001) when compared to healthy individuals, they did not show any relationship with clinical disease severity or the degree of viraemia. The frequency of FoxP3+ cells did not correlate with either ex‐vivo IFN‐γ DENV‐NS3‐, NS5‐ or NS1‐specific T‐cell responses. FoxP3+ cells of patients with acute dengue were predominantly CD45RA+ FoxP3low, followed by CD45RA‐FoxP3low, with only a small proportion of FoxP3+ cells being of the highly suppressive effector Treg subtype. Expression of CCR4 was also low in the majority of T‐cells, with only CCR4 only being expressed at high levels in the effector Treg population. Therefore, although FoxP3+ cells are expanded in acute dengue, they predominantly consist of naive Tregs, with poor suppressive capacity.  相似文献   

4.
Regulatory T cells (Tregs) control immune responses by suppressing various inflammatory cells. Tregs in newborn babies may play an important role in preventing excessive immune responses during their environmental change. We examined the number and phenotype of Tregs during the neonatal period in 49 newborn babies. Tregs were characterized by flow cytometry using cord blood (CB) and peripheral blood (PB) from the early (7–8 days after birth) and late (2–4 weeks after birth) neonatal periods. CD4+forkhead box protein 3 (FoxP3+) T cells were classified into resting Tregs (CD45RA+FoxP3low), activated Tregs (CD45RA FoxP3high) and newly activated T cells (CD45RA FoxP3low). Compared with CB and PB during the late neonatal period, the percentage of Tregs and all Treg subpopulations in the CD4+ lymphocyte population were increased significantly during the early neonatal period. Furthermore, the proportion and absolute number of activated Tregs were increased markedly compared with other Treg subpopulations, such as resting Tregs and newly activated T cells (non‐Tregs), in the early neonatal period. Increased Tregs concomitantly expressed the suppressive molecule cytotoxic T lymphocyte antigen‐4 (CTLA‐4). The up‐regulated expression of chemokine receptor 4 (CCR4) and down‐regulated expression of CCR7 were also observed in expanded Tregs. When cord blood cells were cultured in vitro with CD3 monoclonal antibodies (mAb) for 5 days, CD4+CD45RAFoxP3high cells were increased significantly during the culture. Thus, the presence of increased activated Tregs in early neonates may play an important role in immunological regulation by suppressing excessive T cell activation caused by the immediate exposure to ubiquitous antigens after birth.  相似文献   

5.
Type I diabetes (T1D) is a T cell‐mediated autoimmune disease characterized by loss of tolerance to islet autoantigens, leading to the destruction of insulin‐producing beta cells. Peripheral tolerance to self is maintained in health through several regulatory mechanisms, including a population of CD4+CD25hi naturally occurring regulatory T cells (Tregs), defects in which could contribute to loss of self‐tolerance in patients with T1D. We have reported previously that near to T1D onset, patients demonstrate a reduced level of suppression by CD4+CD25hi Tregs of autologous CD4+CD25 responder cells. Here we demonstrate that this defective regulation is also present in subjects with long‐standing T1D (> 3 years duration; P = 0·009). No difference was observed in forkhead box P3 or CD127 expression on CD4+CD25hi T cells in patients with T1D that could account for this loss of suppression. Cross‐over co‐culture assays demonstrate a relative resistance to CD4+CD25hi Treg‐mediated suppression within the CD4+CD25 T cells in all patients tested (P = 0·002), while there appears to be heterogeneity in the functional ability of CD4+CD25hi Tregs from patients. In conclusion, this work demonstrates that defective regulation is a feature of T1D regardless of disease duration and that an impaired ability of responder T cells to be suppressed contributes to this defect.  相似文献   

6.
The predisposition of preterm neonates to invasive infection is, as yet, incompletely understood. Regulatory T cells (Tregs) are potential candidates for the ontogenetic control of immune activation and tissue damage in preterm infants. It was the aim of our study to characterize lymphocyte subsets and in particular CD4+CD25+forkhead box protein 3 (FoxP3)+ Tregs in peripheral blood of well‐phenotyped preterm infants (n = 117; 23 + 0 – 36 + 6 weeks of gestational age) in the first 3 days of life in comparison to term infants and adults. We demonstrated a negative correlation of Treg frequencies and gestational age. Tregs were increased in blood samples of preterm infants compared to term infants and adults. Notably, we found an increased Treg frequency in preterm infants with clinical early‐onset sepsis while cause of preterm delivery, e.g. chorioamnionitis, did not affect Treg frequencies. Our data suggest that Tregs apparently play an important role in maintaining maternal‐fetal tolerance, which turns into an increased sepsis risk after preterm delivery. Functional analyses are needed in order to elucidate whether Tregs have potential as future target for diagnostics and therapeutics.  相似文献   

7.
Autoimmune diseases are more represented in Down syndrome (DS) individuals compared to chromosomally normal people. Natural T regulatory cells (nTreg) have been considered to be primary in the role of controlling the intensity and targets of the immune response. We have investigated the phenotypical and functional alteration of nTreg in a group of DS people. The phenotypical characteristic of Treg cells of 29 DS was analysed and compared with an age‐matched healthy control group. The inhibitory potential of CD4+CD25highCD127low T regulatory cells was evaluated on autologous CD4+CD25 T cell proliferation in response to activation with a mytogenic pan‐stimulus (anti‐CD2, anti‐CD3 and anti‐CD28 antibodies). The CD4+CD25high cells in the DS and control groups were 2·692 ± 0·3808%, n = 29 and 1·246 ± 0·119, n = 29%, respectively (P = 0.0007), with a percentage of forkhead box protein 3 (FoxP3)‐expressing cells of 79·21 ± 3·376%, n = 29 and 59·75 ± 4·496%, respectively (P = 0.0015). CD4+CD25+FoxP3+ cells were increased in peripheral blood from DS subjects (DS mean 5·231 ± 0·6065% n = 29, control mean 3·076 ± 0·3140% n = 29). The majority of CD4+CD25high were CD127low and expressed a high percentage of FoxP3 (natural Treg phenotype). While the proliferative capacity of DS T cells was not altered significantly compared to normal individuals, a reduced inhibitory potential of Treg compared to healthy controls was clearly observed (mean healthy control inhibition in Teff : Treg 1:1 co‐culture: 58·9% ± 4·157%, n = 10 versus mean DS inhibition in Teff : Treg 1:1 co‐culture: 39·8 ± 4·788%, n = 10, P = 0.0075; mean healthy control inhibition in Teff : Treg 1:0·5 co‐culture: 45·10 ± 5·858%, n = 10 versus DS inhibition in Teff : Treg 1:0·5 co‐culture: 24·10 ± 5·517%, n = 10, P = 0.0177). DS people present an over‐expressed peripheral nTreg population with a defective inhibitory activity that may partially explain the increased frequency of autoimmune disease.  相似文献   

8.
Forkhead box P3 (FoxP3)+ regulatory T cells (Tregs) are functionally deficient in systemic lupus erythematosus (SLE), characterized by reduced surface CD25 [the interleukin (IL)‐2 receptor alpha chain]. Low‐dose IL‐2 therapy is a promising current approach to correct this defect. To elucidate the origins of the SLE Treg phenotype, we studied its role through developmentally defined regulatory T cell (Treg) subsets in 45 SLE patients, 103 SLE‐unaffected first‐degree relatives and 61 unrelated healthy control subjects, and genetic association with the CD25‐encoding IL2RA locus. We identified two separate, uncorrelated effects contributing to Treg CD25. (1) SLE patients and unaffected relatives remarkably shared CD25 reduction versus controls, particularly in the developmentally earliest CD4+FoxP3+CD45ROCD31+ recent thymic emigrant Tregs. This first component effect influenced the proportions of circulating CD4+FoxP3highCD45RO+ activated Tregs. (2) In contrast, patients and unaffected relatives differed sharply in their activated Treg CD25 state: while relatives as control subjects up‐regulated CD25 strongly in these cells during differentiation from naive Tregs, SLE patients specifically failed to do so. This CD25 up‐regulation depended upon IL2RA genetic variation and was related functionally to the proliferation of activated Tregs, but not to their circulating numbers. Both effects were found related to T cell IL‐2 production. Our results point to (1) a heritable, intrathymic mechanism responsible for reduced CD25 on early Tregs and decreased activation capacity in an extended risk population, which can be compensated by (2) functionally independent CD25 up‐regulation upon peripheral Treg activation that is selectively deficient in patients. We expect that Treg‐directed therapies can be monitored more effectively when taking this distinction into account.  相似文献   

9.
10.
11.
Documented reports about T helper type 17 (Th17) cells have revealed that Th17 plays a critical role in inflammation and autoimmunity diseases. However, the role of Th17 in cancer remains contradictory. The interplay between Th17 and tumour cells in the tumour microenvironment of primary hepatic carcinoma (PHC) needs to be explored further and the relationship between Th17, regulatory T cells (Tregs) and regulatory B cells (Bregs) has not been defined completely. In this study, numerous experiments were undertaken to elucidate the interaction of Th17 and Treg/Breg cells involved in PHC. Our work demonstrated that an increased Th17 was detected in the peripheral circulation and in tumour tissues in PHC patients. In addition, increases in peripheral blood Th17 corresponded with tumour–node–metastasis (TNM) stage progression. Also, further studies indicated that Th17 cells were promoted by tumour cells in the PHC tumour microenvironment through both contact‐dependent and ‐independent mechanisms, but cell‐contact played the major important role in promoting the production and proliferation of Th17. When isolated CD4+CD25+CD127low Tregs and CD4+CD25CD127+ non‐Tregs were cultured with autologous tumour cells, it implied that the phenotype of Th17 and Tregs was modified by tumour cells in the tumour microenvironment. As well as this, Th17 cells were also found to correlate positively with CD4+forkhead box protein 3+ Tregs and CD19+CD5+CD1dhi Bregs in PHC. Notably, Th17 increased synchronically with Tregs and Bregs in PHC. These findings may provide new clues to reveal the mechanisms of immune escape in PHC.  相似文献   

12.
Extracorporeal photopheresis (ECP) has been used as a prophylactic and therapeutic option to avoid and treat rejection after heart transplantation (HTx). Tolerance‐inducing effects of ECP such as up‐regulation of regulatory T cells (Tregs) are known, but specific effects of ECP on regulatory T cell (Treg) subsets and dendritic cells (DCs) are lacking. We analysed different subsets of Tregs and DCs as well as the immune balance status during ECP treatment after HTx. Blood samples were collected from HTx patients treated with ECP for prophylaxis (n = 9) or from patients with histologically proven acute cellular rejection (ACR) of grade ≥ 1B (n = 9), as well as from control HTx patients without ECP (HTxC; n = 7). Subsets of Tregs and DCs as well as different cytokine levels were analysed. Almost 80% of the HTx patients showed an effect to ECP treatment with an increase of Tregs and plasmacytoid DCs (pDCs). The percentage of pDCs before ECP treatment was significantly higher in patients with no ECP effect (26·3% ± 5·6%) compared to patients who showed an effect to ECP (9·8% ± 10·2%; P = 0·011). Analysis of functional subsets of CD4+CD25highCD127low Tregs showed that CD62L‐, CD120b‐ and CD147‐positive Tregs did not differ between the groups. CD39‐positive Tregs increased during ECP treatment compared to HTxC. ECP‐treated patients showed higher levels for T helper type 1 (Th1), Th2 and Th17 cytokines. Cytokine levels were higher in HTx patients with rejection before ECP treatment compared to patients with prophylactic ECP treatment. We recommend a monitoring strategy that includes the quantification and analysis of Tregs, pDCs and the immune balance status before and up to 12 months after starting ECP.  相似文献   

13.
Both invariant natural killer T (NK T) cells and CD4+CD25+ T regulatory cells (Tregs) regulate the immune system to maintain homeostasis. In a tumour setting, NK T cells activated by α‐galactosylceramide (α‐GalCer) execute anti‐tumour activity by secreting cytokines. By contrast, Tregs intrinsically suppress antigen‐specific immune responses and are often found to be elevated in tumour patients. In this study, we have shown that Tregs regulate NK T cell function negatively in vitro, suggesting a direct interaction between these cell types. In a murine mammary tumour model, we demonstrated that administration of either α‐GalCer or anti‐CD25 antibody alone markedly suppressed tumour formation and pulmonary metastasis, and resulted in an increase in the survival rate up to 44% (from a baseline of 0%). When treatments were combined, depletion of Tregs boosted the anti‐tumour effect of α‐GalCer, and the survival rate jumped to 85%. Our results imply a potential application of combining Treg cell depletion with α‐GalCer to stimulate NK T cells for cancer therapy.  相似文献   

14.
Programmed cell death‐1 (PD‐1) plays an important role in peripheral T cell tolerance, but whether or not it affects the differentiation of helper T cell subsets remains elusive. Here we describe the importance of PD‐1 in the control of T helper type 1 (Th1) cell activation and development of forkhead box protein 3 (FoxP3+) regulatory T cells (Tregs). PD‐1‐deficient T cell‐specific T‐bet transgenic (P/T) mice showed growth retardation, and the majority died within 10 weeks. P/T mice showed T‐bet over‐expression, increased interferon (IFN)‐γ production by CD4+ T cells and significantly low FoxP3+ Treg cell percentage. P/T mice developed systemic inflammation, which was probably induced by augmented Th1 response and low FoxP3+ Treg count. The study identified a unique, previously undescribed role for PD‐1 in Th1 and Treg differentiation, with potential implication in the development of Th1 cell‐targeted therapy.  相似文献   

15.
There is increasing evidence that inflammation in the synovium plays a major role in the progression of osteoarthritis (OA). However, the immunogenic properties of mesenchymal stromal cells (MSCs), which are considered to regulate immunity in various diseases, remain largely unknown in OA. The purpose of this study was to determine the influence of MSCs from OA patients on regulatory T cells (Tregs) in an allogeneic co‐culture model. Bone marrow (BM) and synovial membrane (SM) were harvested from hip joints of OA patients and co‐cultured with lymphocytes enriched in CD4+CD25+CD127 regulatory T cells (Treg+LC) from healthy donors. Treg proportions and MSC markers were assessed by flow cytometry. Cytokine levels were assessed after 2 and 5 days of co‐cultivation. Additionally, Treg+LC cultures were analysed in the presence of interleukin (IL)‐6 and MSC‐supernatant complemented medium. B‐MSCs and S‐MSCs were able to retain the Treg proportion compared to lymphocyte monocultures. T cell–MSC co‐cultures showed a significant increase of IL‐6 compared to MSC cultures. S‐MSCs produced higher amounts of IL‐6 compared to B‐MSCs, both in single and T cell co‐cultures. The effect of retaining the Treg percentage could be reproduced partially by IL‐6 addition to the medium, but could only be observed fully when using MSC culture supernatants. Our data demonstrate that retaining the Treg phenotype in MSC–T cell co‐cultures can be mediated by MSC derived from OA patients. IL‐6 plays an important role in mediating these processes. To our knowledge, this study is the first describing the interaction of MSCs from OA patients and Tregs in an allogeneic co‐culture model.  相似文献   

16.
Programmed death‐1 (PD‐1) and interactions with PD‐ligand 1 (PD‐L1) play critical roles in the tumour evasion of immune responses through different mechanisms, including inhibition of effector T cell proliferation, reducing cytotoxic activity, induction of apoptosis in tumour‐infiltrating T cells and regulatory T cell (Treg) expansion. Effective blockade of immune checkpoints can therefore potentially eliminate these detrimental effects. The aim of this study was to investigate the effect of anti‐PD‐1 antibody, pembrolizumab, on various Treg subpopulations. Peripheral blood mononuclear cells (PBMC) from healthy donors (HD) and primary breast cancer patients (PBC) were treated in vitro with pembrolizumab, which effectively reduced PD‐1 expression in both cohorts. We found that PD‐1 was expressed mainly on CD4+CD25+ T cells and pembrolizumab had a greater effect on PD‐1 expression in CD4+CD25? T cells, compared to CD4+CD25+ cells. In addition, pembrolizumab did not affect the expression levels of Treg‐related markers, including cytotoxic T lymphocyte antigen‐4 (CTLA‐4), CD15s, latency‐associated peptide (LAP) and Ki‐67. Moreover, we report that CD15s is expressed mainly on forkhead box P3 (FoxP3)?Helios+ Treg in HD, but it is expressed on FoxP3+Helios? Treg subset in addition to FoxP3?Helios+ Treg in PBC. Pembrolizumab did not affect the levels of FoxP3+/?Helios+/? Treg subsets in both cohorts. Taken together, our study suggests that pembrolizumab does not affect Treg or change their phenotype or function but rather blocks signalling via the PD‐1/PD‐L1 axis in activated T cells.  相似文献   

17.
18.
CD4+ T cell anergy reflects the inability of CD4+ T cells to respond functionally to antigenic stimulation through proliferation or IL‐2 secretion. Histone deacetylase (HDAC) inhibitors have been shown to induce anergy in antigen‐activated CD4+ T cells. However, questions remain if HDAC inhibitors mediate anergy through direct action upon activated CD4+ T cells or through the generation and/or enhancement of regulatory T (Treg) cells. To assess if HDAC inhibitor n‐butyrate induces anergy independent of the generation or expansion of FoxP3+ Treg cells in vitro, we examine n‐butyrate‐treated murine CD4+ T cells for anergy induction and FoxP3+ Treg activity. Whereas n‐butyrate decreases CD4+ T cell proliferation and IL‐2 secretion, n‐butyrate did not augment FoxP3 protein production or confer a suppressive phenotype upon CD4+ T cells. Collectively, these data suggest that HDAC inhibitors can facilitate CD4+ T cell functional unresponsiveness directly and independently of Treg cell involvement.  相似文献   

19.
Due to their immunomodulatory properties, mesenchymal stem cells (MSC) are interesting candidates for cellular therapy for autoimmune disorders, graft‐versus‐host disease and allograft rejection. MSC inhibit the proliferation of effector T cells and induce T cells with a regulatory phenotype. So far it is unknown whether human MSC‐induced CD4+CD25+CD127forkhead box P3 (FoxP3)+ T cells are functional and whether they originate from effector T cells or represent expanded natural regulatory T cells (nTreg). Perirenal adipose‐tissue derived MSC (ASC) obtained from kidney donors induced a 2·1‐fold increase in the percentage of CD25+CD127FoxP3+ cells within the CD4+ T cell population from allostimulated CD25–/dim cells. Interleukin (IL)‐2 receptor blocking prevented this induction. The ASC‐induced T cells (iTreg) inhibited effector cell proliferation as effectively as nTreg. The vast majority of cells within the iTreg fraction had a methylated FOXP3 gene Treg‐specific demethylated region (TSDR) indicating that they were not of nTreg origin. In conclusion, ASC induce Treg from effector T cells. These iTreg have immunosuppressive capacities comparable to those of nTreg. Their induction is IL‐2 pathway‐dependent. The dual effect of MSC of inhibiting immune cell proliferation while generating de‐novo immunosuppressive cells emphasizes their potential as cellular immunotherapeutic agent.  相似文献   

20.
Latent autoimmune diabetes of the adults (LADA) accounts for up to 12% of all patients with diabetes. Initially the disease resembles type 2 diabetes (T2D); however, the typical presence of β cell autoantibodies indicates an autoimmune basis of LADA. While dysfunctional regulatory T cells (Tregs) have been implicated in autoimmune diabetes, these cells have been scarcely studied in LADA. The aim of this study was to investigate the frequency and phenotype of circulating Tregs in LADA patients early during disease progression. Flow cytometric analysis was performed on whole blood and peripheral mononuclear cells (PBMC) from patients diagnosed with LADA prior to insulin deficiency (n = 39) and from healthy volunteers (n = 20). Overall, we found the frequency and activation status of peripheral putative Tregs to be altered in LADA patients compared to healthy controls. While total T cells and CD4+ T cells expressing high levels of CD25 (CD4+CD25hi) were unchanged, the frequency and total numbers of CD4+ T cells expressing an intermediate level of CD25 (CD4+CD25int) were decreased in LADA patients. Interestingly, the expression of the Treg‐specific marker forkhead box protein 3 (FoxP3), as well as the activation and memory makers CD69, cytotoxic T lymphocyte associated antigen 4 (CTLA‐4), CCR4 and CD45RO were increased in CD4+CD25+ T cells of the patients. Our data depict phenotypical changes in T cells of LADA patients that may reflect a derangement in peripheral immune regulation contributing to the slow process leading to insulin‐dependent diabetes in these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号