首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
《数学通报》2004,(12):42-42
20 0 4年 1 1月号问题解答(解答由问题提供人给出 )1 5 2 1 已知a ,b,c为满足a3+b3+c3≤ 12 的正数 ,求证 :3 4a+b +c≤ 2 .(江西南昌大学附中 宋 庆  330 0 2 9)证明 因为b3+c3≥b2 c+bc2 ,所以 ( 2 -b -c) 3  =8- 1 2 (b+c) + 6(b +c) 2 - (b +c) 3  =2 + 6(b +c- 1 ) 2 - (b3+c3) - 3(b2 c+bc2 )  ≥ 2 - (b3+c3) - 3(b2 c+bc2 )  ≥ 2 - 4(b3+c3) ≥ 4a3,所以 2 -b -c≥ 3 4a,所以3 4a+b +c≤ 2 .1 5 2 2 正整数n >1 ,f(n) =∑ni=11n +i,求证 :2n3n+ 1 相似文献   

2.
一、问题的来源例 :已知 :当 |x|≤ 1时 ,有 |ax2 +bx +c|≤ 1 .证明 :当 |x|≤ 1时 ,有 |2ax +b|≤ 4 .以上为一匈牙利奥数竞赛题 ,综观各类文献 ,其典型的证法有以下两种 :证法一 :记f(x) =ax2 +bx+c,g(x) =2ax+b.因函数 g(x)在 [- 1 ,1 ]上单调 ,故只要证明在已知条件下有 |g(1 ) |=|2a+b|≤4且|g(- 1 ) |=|- 2a+b|≤ 4即可 .易知2a+b=32 (a +b +c) +12 (a -b +c) - 2c=32 f(1 ) +12 f(- 1 ) - 2f(0 ) .于是由 |f(- 1 ) |≤ 1 ,|f(0 ) |≤ 1及|f(1 ) |≤ 1 ,知 |2a +b|≤ 32 |f(1 ) |+12 |f(- 1 ) |+2 |f(0 ) |≤32 +12 +2 =4,即 |2a +b|…  相似文献   

3.
1.利用一次函数证明不等式 由一次函数y=kx+b的图像可知,如果 f(m)>0,f(n)>0,则对一切x∈(m,n)均有 f(x)>0,反之,如果f(m)<0,f(n)<0,则对 一切x∈(m,n)均有f(x)<0,把这一性质称 为保号性,利用一次函数的保号性可以证明一 些不等式. 例1 设a,b,c都是绝对值小于1的实 数,求证:ab+bc+ca>-1 (*) 证明 ∵ab+bc+ca+1  相似文献   

4.
姜伟 《中学数学》2001,(10):21-22
根据条件和结论的结构特征 ,利用各知识间的内在联系 ,有目的地构造一特定的数学模型 ,从而使问题得以解决的思想 ,即构造思想 .运用构造思想解题常可以独辟蹊径 ,出奇制胜 ,对学生创新意识的培养大有裨益 .1 构造函数证明不等式可以说 ,有数学的地方往往也就有函数 ,因此 ,可以用一次函数的线性性质、二次函数的最值 ,以及函数的单调性等性质 ,对不等式进行证明 .例 1 若 | a| <1 ,| b| <1 ,| c| <1 ,a,b,c为实数 ,求证 :ab bc ca >- 1 .分析 构造一次函数f( x) =( b c) x bc 1 ,则有  f ( 1 ) =( b c) bc 1=( 1 b) ( …  相似文献   

5.
众所周知:若a0时,原不等式的解集为〔-a/4,0〕.2 证明不等式例2 设|a|<1,|b|<1,|c|<1,求证:a b c abc1 ab ac bc<1.证明 记x=a b c abc1 ab ac bc,则原不等式|x|<1-1相似文献   

6.
题 94  已知向量a =(1,1) ,b =(1,0 ) ,c满足a·c =0且 |a| =|c| ,b·c >0 .1)求向量c ;2 )若映射 f :(x ,y)→ (x′ ,y′) =xa + yc,①求映射 f下 (1,2 )的原象 ;②若将 (x ,y)看作点的坐标 ,问是否存在直线l使得直线上的任一点在映射f的作用下的点仍在直线上 ,若存在求出直线l的方程 ,否则说明理由 .解  1)设c =(m ,n) ,由题意得 :m +n =0 ,m2 +n2 =2 ,m·1+n·1>0解得 m =1,n =- 1.∴c=(1,- 1) .2 )①由题意x(1,1) + y(1,- 1) =(1,2 )得 x + y =1,x -y =2 , 解得x =32y =- 12∴ (1,2 )的原象是 (32 ,- 12 ) .②假设存在直线l适合题设 …  相似文献   

7.
陈强 《数学通讯》2003,(17):18-20
1 一个例题文 [1 ]中钱亦青老师举到如下例题 :求函数 f(a ,b ,c) =1a3(b +c) + 1b3(c+a)+ 1c3(a +b) 在条件a >0 ,b >0 ,c >0 ,abc =1之下的最小值 .该题变式为 :命题 1 已知a >0 ,b>0 ,c>0且abc=1 ,求证 :1a3(b+c) + 1b3(c+a) + 1c3(a +b) ≥32 ( 1 )现采用文 [2 ]构造函数的方法证明不等式( 1 ) .证 为了书写方便 ,设U =1a3(b +c) +1b3(c+a) + 1c3(a+b) ,V =1a+ 1b+ 1c.构造函数g(x) =xaa(b +c) -a(b+c) 2  + xbb(c+a) -b(c+a) 2  + xcc(a +b) -c(a +b)2=x21a3(b +c) + 1b3(c+a)  + 1c3(a+b)  - 2x 1a+ 1b+ 1c + [a(b +c)  +b(c…  相似文献   

8.
本文中|A|表示集合A的元素个数.1设P(x)=x~3-3x 1.求一个多项式Q(x),使得Q(x)的根是P(x)的根的5次幂.解设a,b,c是P(x)的根.由根与系数的关系,有依题意知,Q(x)=(x-a5)(x-b5)(x-c5)=x3-(a5 b5 c5)x2 (a5b5 a5c5 b5c5)x-a5b5c5=x3-S5x2 T5x 1.这里S5=a5 b5 c5,T5=a5b5 b5c5 c5a5.对于正整数n,令Sn=an bn cn,则有T5=21(S52-S10),所以要求Q(x),只需求出S5与S10.∵S1=a b c=0,S2=(a b c)2-2(ab bc ca)=6.又a,b,c是方程x3=3x-1的根,所以a3=3a-1,b3=3b-1,c3=3c-1,由此易得Sn 3=3Sn 1-Sn(n≥1),∴S3=3(a b c)-3=-3,S4=3×S2-S1=3×6-0=18…  相似文献   

9.
一个不等式的推广   总被引:1,自引:0,他引:1  
本刊文[1]给出如下姊妹不等式:若a,b,c是正数,且a b c=1,则有1b c-ac 1a-ba 1b-c≥673(1)当且仅当a=b=c=31时取等号.1b c ac 1a ba1 b c≥1613(2)当且仅当a=b=c=31时取等号.不等式(1)可改写为:11-a-a1-1b-b1-1c-c≥673(3)当且仅当a=b=c=31时取等号.本文将把不等式(3)推广为:命题设xi>0(i=1,2,…,n),∑ni=1xi=1,则∏ni=1(1-1xi-xi)≥(n-n1-1n)n(4)当且仅当x1=x2=…=xn=1n时等号成立.引理设f″(x)>0,则1n∑ni=1f(xi)≥f(1ni∑=n1xi)(5)此即著名的Jesen不等式.下面给出(4)式的证明.证设y=f(x)=ln(1-1x-x)(0相似文献   

10.
若ai,bi∈R ,i=1 ,2 ,… ,n(n≥ 2 )则 (a21 +a22 +… +a2 n) (b21 +b22 +… +b2 n)≥ (a1 b1 +a2 b2 +… +anbn) 2证明 :若ai=0 ,命题显然成立若ai 不全为零 ,则设f(x) =(a21 +a22 +… +a2 n)x2 +2 (a1 b1 +a2 b2+… +anbn)x+(b1 +b2 +… +bn)=(a1 x+b1 ) 2 +(a2 x+b2 ) 2 +…+(anx+bn) 2 ≥ 0由于二次项系数a21 +a22 +… +a2 n>0所以Δ≤ 0即 4(a1 b1 +a2 b2 +… +anbn) 2 - 4 (a21 +a22 +…b2 n)(b21 +b22 +… +b2 n)≤0故 (a21 +a22 +… +a2 n) (b21 +b22 +… +b2 n)≥ (a1 b1 +a2 b2 +… +anbn) 2这是著名的柯西 (Cauchy)不等式 .下面…  相似文献   

11.
智慧窗     
一、巧求值已知f(x)=(x+a)(x+b)(x+c)+7,其中a、b、c是互不相等的整数,若f(1)=0,则a +b+c的值是多少? 湖北广水市一中(432700) 彭光焰提供  相似文献   

12.
<正>构造函数法就是根据所证不等式的特征,构造适当的函数,然后利用一元二次函数的判别式、函数的奇偶性、单调性、有界性等性质来证明不等式,这种方法,统称为构造函数法.例1设a,b,c∈R,求证:a2+ac+c2+ac+c2+3b(a+b+c)≥0,并指出等号何时成立.证明左边整理成关于a的二次式f(a)=a2+3b(a+b+c)≥0,并指出等号何时成立.证明左边整理成关于a的二次式f(a)=a2+(c+3b)a+c2+(c+3b)a+c2+3b2+3b2+3bc.∵Δ=(c+3b)2+3bc.∵Δ=(c+3b)2-4(c2-4(c2+3b2+3b2+3bc)=  相似文献   

13.
周华生 《数学通报》2007,46(9):58-59
分式线性函数f(x)=(ax b)/(cx d)的n次迭代的计算方法已有很多文章作了讨论,本文介绍一种简便的计算方法,可以很方便地求出fn(x).定理1已知f(x)=(ax b)/(cx d)设f0(x)=x,f1(x)=f(x),fn(x)=f[fn-1(x)](n≥1),a,b,c,d∈R且ad≠bc,c≠0,则fn(x)=(α(qqnn--βppnn))xx ααpβn(-p  相似文献   

14.
一、选择题1.a ,b ,c为实数 ,则ac2 >bc2 是a >b的(   )条件 .(A)充分不必要  (B)必要不充分(C)充要 (D)既不充分也不必要2 .已知映射f :A→B ,集合A中元素n在对应法则 f下的像为 2 n+n .则 70的原像是(   ) .(A) 6  (B) 7  (C) 8  (D) 93 .命题 :“若ab =0则a =0或b =0”及其逆命题、否命题、逆否命题中真命题的个数为(   ) .(A) 1  (B) 2  (C) 3  (D) 44 .不等式 |2x +3 |≥ 7成立的一个必要不充分的条件是 (   ) .(A)x≥ 2    (B)x≤ -5(C)x≥ 2或x≤ -5(D)x >1或x≤ -35 .已知函数y =f(x)定义域为 [-2 ,4] .…  相似文献   

15.
<正>高中数学学习中,不等式变形巧妙神奇,尤其是柯西不等式的应用.我梳理了一下有关柯西不等式的证明及应用,方便同学们使用.柯西不等式:(a1b1+a2b2+…+an bn)2≤(a21+a22+…+a2n)(b21+b22+…+b2n)(ai bi∈R,i=1,2…n).等号当且仅当a1=a2=…=an=0或bi=tai时成立(t为常数,i=1,2…n).柯西不等式的证明方法很多,下面的方法比较深刻且具通性.为简便,设ai不全为0.证法一(构造二次函数)f(x)=(a1x+b1)2+(a2x+b2)2+…+(an x+bn)2=(a21+a22+…+a2n)x2+2(a1b1+a2b2+…+an bn)x+(b21+b22+…+b2n).  相似文献   

16.
浅谈柯西不等式的证明及应用   总被引:4,自引:1,他引:3  
柯西(Cauchy)不等式(a1b1 a2b2 … anbn)2≤(a12 a22 … an2)(b12 b22 … bn2)(ai,bi∈R,i=1,2…,n),当且仅当a1b1=a2b2=…=anbn时等号成立.现将它的证明介绍如下:证明1(构造法):构设二次函数f(x)=(a1x b1)2 (a2x b2)2 … (anx bn)2=(a12 a22 … an2)x2 2(a1b1 a2b2 …anbn)x (b12 b22 … bn2),∵a12 a22 … an2>0,f(x)≥0恒成立,∴△=4(a1b1 a2b2 … anbn)2-4(a12 a22 … an2).(b12 b22 … bn2)≤0,即(a1b1 a2b2 … anbn)2≤(a12 a22 … an2)(b12 b22 … bn2),当且仅当aix bi=0(i=1,2,…,n),即a1b1=a2b2=…=anbn时等号成立.证明2(数学归纳…  相似文献   

17.
假设a,b0并且K_(a,b)(x)=(e~(i|x|~(-b)))/(|x|~(n+a))定义强奇异卷积算子T如下:Tf(x)=(K_(a,b)*f)(x),本文主要考虑了如上定义的算子T在Wiener共合空间W(FL~p,L~q)(R~n)上的有界性.另一方面,设α,β0并且γ(t)=|t|~k或γ(t)=sgn(t)|t|~k.利用振荡积分估计,本文还研究了算子T_(α,β)f(x,y)=p.v∫_(-1)~1f(x-t,y-γ(t))(e~(2πi|t|~(-β)))/(t|t|~α)dt及其推广形式∧_(α,β)f(x,y,z)=∫_(Q~2)f(x-t,y-s,z-t~ks~j)e~(-2πit)~(-β_1_s-β_2)t~(-α_1-1)s~(-α_2-1)dtds在Wiener共合空间W(FL~p,L~q)上的映射性质.本文的结论足以表明,Wiener共合空间是Lebesgue空间的一个很好的替代.  相似文献   

18.
题158已知函数f(x)的导数f′(x)满足0α时,总有f(x)α,在α与β之间存在一点c,αα,所以f′(c)=1,与已知0相似文献   

19.
§1.设函数f(x),g(x)在区间ι上高阶可微,则下列恆等式成立: f′g十fg′=(fg)′, f″g十fg″=(fg)″-2(f′g′), f′″g+fg″′=(fg)″′-3(f′g′)′, f″″g+fg″″=(fg)″″-4(f′g′)″+2(f″g″),它们之间有关系 f~(n)g+fg~(n)=(f~(n-1)g+fg~(n-1))′--(f~(n-1)g′+f′g~(n-1))。§2.现在我们规定 f~(n)g+fg~(n)=A_0(fg~(n)+A_1(f′g′)~(n-2)+…++A_[n/2]~(f~([n/2])g~([n/2]))(n-2([n/2])),其中高斯记号[n/2]表示不超过n/2的最大正整数。由于未定系数A_0,A_1,…,A_[n/2]的数值函数f(x),g(x)无关,不妨选取 f(x)=e~(ax),g(x)=e~(bx),就有 f~(n)g+fg~(n)=(a~n+b~n)e~((a+b)x),以及 (f~(ι)g~(ι))~((n-2ι))=(a+b)~(n-2ι)(ab)~ιe~((a+b)x)(ι=1,2,…,[n/2])。代入规定的等式中,两边约去公因子e~((a+b)x)以后,立刻得到  相似文献   

20.
习题 已知 a,b∈ R+ ,且 a≠ b,求证 :a2 + b2 >3 a3 + b3 .证明 原命题等价于( a2 + b2 ) 3 >( a3 + b3 ) 2 ,展开很易证明 .推广 已知 a,b,m,n∈ R+ ,且 a≠ b,m >n,求证 :n an + bn >m am + bm .证明 构造函数 y =f( x) =x ax + bx( a,b∈ R+ ,且 a≠ b,x >0 ) ,两边取对数得  lny =ln( ax + bx)x ,两边取导数 ,得y′y =x( axlna + bxlnb) - ( ax + bx) ln( ax + bx)x2 ( ax + bx) .∵  a,b∈ R+ ,且 a≠ b,x >0 ,∴  ( ax) ax . ( bx ) bx <( ax + bx ) ax+ bx,∴  x( axlna + bxlnb)   <( ax + bx) ln( ax + bx) ,∴  y′…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号