首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The subcellular localization of the sites of 1-aminocyclopropane-1-carboxylic acid (ACC) conversion into ethylene was studied by comparing the specific radioactivity of ethylene evolved from the whole cells with that of intra- and extracellular pools of labelled ACC. We demonstrate that some cells cultured in vitro (Vitis vinifera L. cv. Muscat) or leaf tissues (Hordeum vulgare L. and Triticum aestivum L.) have two sites of ethylene production: (i) an external site, converting apoplastic ACC, located at the plasma membrane, and very sensitive to high osmotica and, (ii) an intracellular site, converting internal ACC and remaining unaffected even under severe plasmolysis. In other cells cultured in vitro (Vitis vinifera L. cv. Gamay) and pea leaves (Pisum sativum L.), only the intracellular site operates and ethylene production is almost unaffected by plasmolysis. Protoplasts obtained from plasmolysis-sensitive Muscat cells lose 97% of their capacity for ethylene production compared with the parent cell, while those from plasmolysisinsensitive Gamay cells retain up to 50%. Protoplasts from both Gamay and Muscat cells cultured for 8 d in vitro, recover the full capacity of ethylene production of the initial whole cells, whether or not they are allowed to reform their cell wall. Therefore, we exclude a cooperation between the cell wall and the plasma membrane in ethylene production.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme We are grateful to Dr. Philip John (Reading, UK) for useful discus sions made possible by a North Atlantic Treaty Organization Colla borative Grant (No. 0383/88) and Dr. Yves Meyer (Perpignan, France) for his collaboration in culturing protoplasts.  相似文献   

3.
M. -L. Botha  C. S. Whitehead 《Planta》1992,188(4):478-483
Senescence of Petunia hybrida L. flowers is accompanied by a climacteric pattern in ethylene production and a rapid decline in the levels of putrescine and spermidine during the preclimacteric phase. The decrease in spermidine is caused by the decline in the availability of putrescine which is initially synthesized from L-arginine via agmatine and N-carbamoylputrescine. Inhibition of putrescine and polyamine synthesis resulted in a rapid drop in the levels of putrescine and spermidine without resulting in a concomitant increase in ethylene production. These results indicate that polyamine synthesis is not involved in the control of ethylene synthesis through its effect on the availability of S-adenosylmethionine, and is confirmed by the results obtained with pollinated flowers. Treatment with polyamines may stimulate or suppress ethylene production in the corolla, depending on the concentrations applied. In unpollinated flowers the onset of the climacteric rise in ethylene production was accelerated after treatment with polyamines. However, in pollinated flowers this process was delayed as a result of treatment with low concentrations of polyamines. The effects of exogenous polyamines on ethylene production in both pollinated and unpollinated flowers indicate that ethylene synthesis in these flowers is not regulated by a feedback control mechanism. Although polyamines do not play a key role in the control of ethylene production during the early stages of senescence through their effect on the availability of S-adenosylmethionine, it appears that they play an important role in some of the other processes involved in senescence.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - MGBG methylglyoxal bis-(guanylhydrazone) - SAM S-adenosylmethionine  相似文献   

4.
Y. Liu  N. E. Hoffman  S. F. Yang 《Planta》1985,164(4):565-568
The increase in ethylene formation and in 1-aminocyclopropane-1-carboxylic acid (ACC) content in flavedo tissue of grapefruit (Citrus paradisi Macfad. cv. Ruby Red) in response to excision was markedly inhibited by exogenous ethylene. Ethylene treatment inhibited the synthesis of ACC, but increased the tissue's capability to malonylate ACC to N-malonyl-ACC, resulting in further reduction in the endogenous ACC content. The development of extractable ACC-malonyl-transferase activity in the tissue was markedly promoted by treatment with exogenous ethylene. These results indicate that the autoinhibition of ethylene production in this tissue results not only from suppression of ACC synthesis, but also from promotion of ACC malonylation; both processes reduce the availability of ACC for ethylene synthesis.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AVG aminoethyoxyvinylglycine (2-amino-4-(2-aminoexthoxy)-trans-3-butenoic acid) - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid  相似文献   

5.
The biosynthetic basis for the high rates of ethylene production by the apical region of etiolated pea (Pisum sativum L.) seedlings was investigated. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) was quantified in extracts of various regions of seedlings by measuring isotopic dilution of a 2H-labelled internal standard using selected-ion-monitoring gas chromatography/mass spectrometry. The ACC levels in the apical hook and leaves were much higher than in the expanded internodes of the epicotyl. The capacity of excised tissue sections to convert exogenous ACC to ethylene was also much greater in the apical region, reflecting the distribution of soluble protein in the epicotyl.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - FW fresh weight - GC/MS coupled gas chromatography/mass spectrometry - HPLC high-performance liquid chromatography  相似文献   

6.
Mesophyll protoplasts of tobacco (Nicotiana tabacum L. cv. Xanthi) were evacuolated by centrifugation in a density gradient. Evacuolation resulted in the quantitative loss of vacuolar hydrolytic activities. The evacuolated miniprotoplasts were cultivated under different conditions, and the regeneration of the central vacuole was investigated by light and electron microscopy as well as by the determination of activities of vacuolar marker enzymes. Vacuoles and hydrolytic activities, as well as cell wall material reappeared faster when the cells were cultivated at low osmotic strength. A newly synthesized tonoplast polypeptide could be detected using a polyspecific serum raised against tonoplast proteins of barley (Hordeum vulgare L.). Both vacuolar proton pumps, the ATPase as well as the pyrophosphatase appear to be newly synthesized during the regeneration of the vacuole.Abbreviations GAP-DH NADP-dependent glyceraldehyde 3-phosphate dehydrogenase - PEP phosphoenolpyruvate - PPi pyrophosphate - PPase pyrophosphatase We thank Dr. Ernst Wehrli, Labor für Elektronenmikroskopie I, ETH Zürich, for taking micrographs. Esther Vogt assisted in the determination of the hydrolases. Bafilomycin was kindly provided by Professor Altendorf, Osnabrück FRG. This work was supported by the Swiss National Foundation grant No. 31-25196.88.  相似文献   

7.
The activity of the ethylene-forming enzyme (EFE) in suspension-cultured tomato (Lycopersicon esculentum Mill.) cells was almost completely abolished within 10 min by 0.4 mM of the metal-chelating agent 1,10-phenanthroline. Subsequent addition of 0.4 mM FeSO4 immediately reversed this inhibition. A partial reversion was also obtained with 0.6 mM CuSO4 and ZnSO4, probably as a consequence of the release of iron ions from the 1,10-phenanthroline complex. The inhibition was not reversed by Mn2+ or Mg2+. Tomato cells starved of iron exhibited a very low EFE activity. Addition of Fe2+ to these cells caused a rapid recovery of EFE while Cu2+, Zn2+ and other bivalent cations were ineffective. The recovery of EFE activity in iron-starved cells was insensitive to cycloheximide and therefore does not appear to require synthesis of new protein. The EFE activity in tomato cells was induced by an elicitor derived from yeast extract. Throughout the course of induction, EFE activity was blocked within 10–20 min by 1,10-phenanthroline, and the induced level was equally rapidly restored after addition of iron. We conclude that iron is an essential cofactor for the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in vivo.  相似文献   

8.
Guy  Micha  Kende  Hans 《Planta》1984,160(3):276-280
Protoplasts isolated from leaves of peas (Pisum sativum L.) and of Vicia faba L. produced 1-aminocyclopropane-1-carboxylic acid (ACC) from endogenous substrate. Synthesis of ACC and conversion of ACC to ethylene was promoted by light and inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and carbonyl cyanide m-chlorophenylhydrazone. Aminoethoxyvinylglycine inhibited ethylene synthesis to a minor extent when given during incubation of the protoplasts but was very effective when added both to the medium in which the protoplasts were isolated and to the incubation medium as well. Radioactivity from [U-14C]methionine was incorporated into ACC and ethylene. However, the specific radioactivity of the C-2 and C-3 atoms of ACC, from which ethylene is formed, increased much faster than the specific radioactivity of ethylene. It appears that ACC and ethylene are synthesized in different compartments of the cell and that protoplasts constitute a suitable system to study this compartmentation.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

9.
Tsu-Tsuen Wang  Shang Fa Yang 《Planta》1987,170(2):190-196
In order to understand the physiological significance of the in-vitro lipoxygenase (EC 1.13.11.12)-mediated ethylene-forming system (J.F. Bousquet and K.V. Thimann 1984, Proc. Natl. Acad. Sci. USA 81, 1724–1727), its characteristics were compared to those of an in-vivo ethylene-forming system. While oat (Avena sativa L.) leaves, as other plant tissues, preferentially converted only one of the 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC) isomers to 1-butene, the lipoxygenase system converted all four AEC isomers to 1-butene with nearly equal efficiencies. While the in-vivo ethylene-forming system of oat leaves was saturable with ACC with a Km of 16 M, the lipoxygenase system was not saturated with ACC even at 10 mM. In contrast to the in-vivo results, only 10% of the ACC consumed in the lipoxygenase system was converted to ethylene, indicating that the reaction is not specific for ethylene formation. Increased ACC-dependent ethylene production in oat leaves following pretreatment with linoleic acid has been inferred as evidence of the involvement of lipoxygenase in ethylene production. We found that pretreating oat leaves with linoleic acid resulted in increased ACC uptake and thereby increased ethylene production. A similar effect was observed with oleic acid, which is not a substrate of lipoxygenase. Since linoleic acid hydroperoxide can substitute for lipoxygenase and linoleic acid in this system, it is assumed that the alkoxy radicals generated during the decomposion of linoleic acid hydroperoxide are responsible for the degradation of ACC to ethylene. Our results collectively indicate that the reported lipoxygenase system is not the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - Epps N-(2-hydroxyethyl)-piperazine-N-3-propanesulfonic acid - LH linoleic acid - LOOH linoleic acid hydroperoxide - pyridoxal-P pyridoxal-phosphate This work was presented at the 12th International Conference on Plant Growth Substances, Heidelberg, FRG, August 1985 (Abstract No. PO 5-52)  相似文献   

10.
Ching Huei Kao  Shang Fa Yang 《Planta》1982,155(3):261-266
The mechanism of light-inhibited ethylene production in excised rice (Oryza sativa L.) and tobacco (Nicotiana tabacum L.) leaves was examined. In segments of rice leaves light substantially inhibited the endogenous ethylene production, but when CO2 was added into the incubation flask, the rate of endogenous ethylene production in the light increased markedly, to a level which was even higher than that produced in the dark. Carbon dioxide, however, had no appreciable effect of leaf segments incubated in the dark. The endogenous level of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, was not significantly affected by lightdark or CO2 treatment, indicating that dark treatment or CO2exerted its effect by promoting the conversion of ACC to ethylene. This conclusion was supported by the observations that the rate of conversion of exogenously applied ACC to ethylene was similarly inhibited by light, and this inhibition was relieved in the presence of CO2. Similar results were obtained with tobacco leaf discs. The concentrations of CO2 giving half-maximal activity was about 0.06%, which was only slightly above the ambient level of 0.03%. The modulation of ACC conversion to ethylene by CO2 or light in detached leaves of both rice and tobacco was rapid and fully reversible, indicating that CO2 regulates the activity, but not the synthesis, of the enzyme converting ACC to ethylene. Our results indicate that light inhibition of ethylene production in detached leaves is mediated through the internal level of CO2, which directly modulates the activity of the enzyme converting ACC to ethylene.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid Recipient of a Republic of China National Science Council Fellowship  相似文献   

11.
White light inhibits the conversion of 1-amino-cyclopropane-1-carboxylic acid (ACC) in discs of green leaves of tobacco (Nicotiana tabacum L.) and segments of oat (Avena sativa L.) leaves by from 60 to 90%. Etiolated oat leaves do not show this effect. The general nature of the effect is shown by its presence in both a mono- and a dicotyledon. Since the leaves have been grown and pre-incubated in light, yet can produce from 2 to 9 times as much ethylene in the dark as in the light, it follows that the light inhibition is fully reversible. The inhibition by light is about equal to that exerted in the dark by CoCl2; it can be partly reversed by dithiothreitol and completely by mercaptoethanol. Thus the light is probably acting, via the photosynthetic system, on the SH group(s) of the enzyme system converting ACC to ethylene.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

12.
Bean leaves from Phaseolus vulgaris L. var. Pinto 111 react to mechanical wounding with the formation of ethylene. The substrate for wound ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC). It is not set free by decompartmentation but is newly synthesized. ACC synthesis starts 8 to 10 min after wounding at 28°C, and 15 to 20 min after wounding at 20°C. Aminoethoxyvinylglycine (AVG), a potent inhibitor of ethylene formation from methionine via ACC, inhibits wound ethylene synthesis by about 95% when applied directly after wounding (incubations at 20°C). AVG also inhibits the accumulation of ACC in wounded tissue. AVG does not inhibit conversion of ACC to ethylene. Wound ethylene production is also inhibited by cycloheximide, n-propyl gallate, and ethylenediaminetetraacetic acid.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine - EDTA ethylenediaminetetraacetic acid  相似文献   

13.
The cofactor of enzymatic, 1-aminocyclopropane-1-carboxylic acid dependent ethylene formation was concentrated on cation exchange columns. When chelators of cations were added to the homogenates, cofactor activity was lost. Cofactor fractions were partly resistant to oxidation at 600° C. Mn2+ substituted for the cofactor in ethylene formation from 1-aminocyclopropane-1-carboxylic acid by a protein fraction isolated from etiolated pea shoots. In addition, Mn2+ enhanced the stimulatory effect of the concentrated cofactor. The elution volume for the cofactor on a Sephadex G-25 column was lower than that of MnCl2. In paper electrophoresis the cofactor migrated to the cathode at pH 10.8 and 2.2. The RF of cofactor on cellulose plates developed in butanol: acetic acid: H2O was 0.4. After cellulose chromatography, cofactor activity had to be reconstituted by the addition of MnCl2. Chelators, anti-oxidants, and catalase were inhibitors of Mn2+-cofactor-dependent ethylene formation. The protein necessary for 1-aminocyclopropane-1-carboxylic acid dependent ethylene formation in vitro was seperated from 95–98% of the total protein in homogenates by DE-52 cellulose chromatography and (NH4)2SO4-fractionation.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EDTA ethylenediaminetetraacetic acid - DDTC diethyldithiocarbamate  相似文献   

14.
Georg Kaiser  Ulrich Heber 《Planta》1984,161(6):562-568
Sucrose transport has been investigated in vacuoles isolated from barley mesophyll protoplasts. Rates of sucrose transfer across the tonoplast were even higher in vitro than in vivo indicating that the sucrose transport system had not suffered damage during isolation of the vacuoles. Sucrose transport is carrier-mediated as shown by substrate saturation of transport and sensitivity to a metabolic inhibitor and to competitive substrates. A number of sugars, in particular maltose and raffinose, decreased uptake of sucrose. Sorbitol was slowly taken up but had no effect on sucrose transport. The SH-reagent p-chloromercuribenzene sulfonate inhibited sucrose uptake completely. The apparent Km of the carrier for sucrose uptake was 21 mM. Transport was neither influenced by ATP and pyrophosphate, with or without Mg2+ present, nor by protonophores and valinomycin (with K+ present). Apparently uptake was not energy dependent. Efflux experiments with preloaded vacuoles indicated that sucrose unloading from the isolated vavuoles is mediated by the same carrier which catalyses uptake. The vacuole of mesophyll cells appears to represent an intermediary storage compartment. Uptake of photosynthetic products into the vacuole during the light apparently minimizes osmotic swelling of the small cytosolic compartment of vacuolated leaf cells when photosynthetic productivity exceeds the capacity of the phloem for translocation of sugars.Abbreviations Hepes 4-(2-hydroxyethyl)-1-piperazincethane-sulfonic acid - pCMBS p-chloromercuribenzene sulfonate Dedicated to Professor Dr. W. Simonis on the occasion of his 75th birthday  相似文献   

15.
A simple and sensitive chemical assay was developed for 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene. The assay is based on the liberation of ethylene from ACC at pH 11.5 in the presence of pyridoxal phosphate, MnCl2 and H2O2. This assay was used to detect ACC in extracts of tomato fruits (Lycopersicon esculentum Mill.) and to measure the activity of a soluble enzyme from tomato fruit that converted S-adenosylmethionine (SAM) to ACC. The enzyme had a Km of 13 M for SAM, and conversion of SAM to ACC was competitively and reversibly inhibited by aminoethoxyvinylglycine (AVG), an analog of rhizobitoxine. The Ki value for AVG was 0.2 M. The level of the ACC-forming enzyme activity was positively correlated with the content of ACC and the rate of ethylene formation in wild-type tomatoes of different developmental stages. Mature fruits of the rin (non-ripening) mutant of tomato, which only produce low levels of ethylene, contained much lower levels of ACC and of the ACC-forming enzyme activity than wild-type tomato fruits of comparable age.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine L-2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid - SAM S-adenosyl-L-methionine Michigan Agricultural Experiment Station No. 8876  相似文献   

16.
The effect of hydroxylation genes on the hydroxylation of intermediates of flavonoid biosynthesis in Petunia hybrida is reported. In mutants homozygous recessive, for the gene An9, dihydroflavonols accumulate. The number of hydroxyl groups in the B-ring is determined by the hydroxylation genes Htl and Hfl. A similar effect of Htl and (probably) Hfl occurs in flavanone-accumulating mutants, homozygous recessive for the gene An3. Mutants dominant for Hfl probably accumulate a 5,7,3,4,5-pentahydroxyflavanone. The mutant W43, homozygous recessive for the gene An5, is blocked in an early flavonoid biosynthesis step. It accumulates p-coumaric acid together with caffeic acid. The hydroxylation genes Htl and Hfl, however, are also homozygous recessive, which indicates that the hydroxylation of p-coumaric acid to caffeic acid or derivatives of these compounds is not controlled by Htl. The accumulation of caffeic acid was observed in all mutants investigated so far, regardless of which hydroxylation genes were dominant or recessive. We conclude that hydroxylations involved in anthocyanin biosynthesis occur at the C15 level.Deceased  相似文献   

17.
The biosynthesis of ethylene was examined in suspension-cultured cells of parsley (Petroselinum hortense) treated with an elicitor from cell walls of Phytophthora megasperma. Untreated cells contained 50 nmol g-1 of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), and produced ethylene at a rate of about 0.5 nmol g-1 h-1. Within 2 h after addition of elicitor to the culture medium, the cells started to produce more ethylene and accumulated more ACC. Exogenously added ACC did not increase the rate of ethylene production in control or elicitor-treated cells, indicating that the enzyme converting ACC to ethylene was limiting in both cases. The first enzyme in ethylene biosynthesis, ACC synthase, was very rapidly and transiently induced by the elicitor treatment. Its activity increased more than tenfold within 60 min. Density labelling with 2H2O showed that this increase was caused by the denovo synthesis of the enzyme protein. Cordycepin and actinomycin D did not affect the induction of ACC synthase, indicating that the synthesis of new mRNA was not required. The peak of ACC-synthase activity preceded the maximal phenylalanine ammonia-lyase (PAL) activity by several hours. Exogenously supplied ethylene or ACC did not induce PAL. However, aminoethoxyvinylglycine, an inhibitor of ACC synthase, suppressed the rise in ethylene production in elicitor-treated cells and partially inhibited the induction of PAL. Exogenously supplied ACC reversed this inhibition. It is concluded that induction of the ethylene biosynthetic pathway is a very early symptom of elicitor action. Although ethylene alone is not a sufficient signal for PAL induction, the enhanced activity of ACC synthase and the ethylene biosynthetic pathway may be important for the subsequent induction of PAL.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - PAL phenylalanine ammonia-lyase  相似文献   

18.
The regulation of gravistimulation-induced ethylene production and its role in gravitropic bending was studied in Antirrhinum majus L. cut flower stems. Gravistimulation increased ethylene production in both lower and upper halves of the stems with much higher levels observed in the lower half. Expression patterns of three different 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) genes, an ACC oxidase (ACO) and an ethylene receptor (ETR/ERS homolog) gene were studied in the bending zone of gravistimulated stems and in excised stem sections following treatment with different chemicals. One of the ACS genes (Am-ACS3) was abundantly expressed in the bending zone cortex at the lower side of the stems within 2 h of gravistimulation. Am-ACS3 was not expressed in vertical stems or in other parts of (gravistimulated) stems, leaves or flowers. Am-ACS3 was strongly induced by indole-3-acetic acid (IAA) but not responsive to ethylene. The Am-ACS3 expression pattern strongly suggests that Am-ACS3 is responsible for the observed differential ethylene production in gravistimulated stems; its responsiveness to IAA suggests that Am-ACS3 expression reflects changes in auxin signalling. Am-ACS1 also showed increased expression in gravistimulated and IAA-treated stems although to a much lesser extent than Am-ACS3. In contrast to Am-ACS3, Am-ACS1 was also expressed in non-bending regions of vertical and gravistimulated stems and in leaves, and Am-ACS1 expression was not confined to the lower side cortex but evenly distributed over the diameter of the stem. Am-ACO and Am-ETR/ERS expression was increased in both the lower and upper halves of gravistimulated stems. Expression of both Am-ACO and Am-ETR/ERS was responsive to ethylene, suggesting regulation by IAA-dependent differential ethylene production. Am-ACO expression and in vivo ACO activity, in addition, were induced by IAA, independent of the IAA-induced ethylene. IAA-induced growth of vertical stem sections and bending of gravistimulated flowering stems were little affected by ethylene or 1-methylcyclopropene treatments, indicating that the differential ethylene production plays no pivotal role in the kinetics of gravitropic bending.  相似文献   

19.
The characteristics of the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by pea (Pisum sativum L.) epicotyls and by pea epicotyl enzyme are compared. Of the four stereoisomers of 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC), only (1R,2S)-AEC is preferentially converted to 1-butene in pea epicotyls. This conversion is inhibited by ACC, indicating that butene production from (1R,2S)-AEC and ethylene production from ACC are catalyzed by the same enzyme. Furthermore, pea epicotyls efficiently convert ACC to ethylene with a low K m (66 M) for ACC and do not convert 4-methylthio-2-oxo-butanoic acid (KMB) to ethylene, thus demonstrating high specificity for its substrate. In contrast, the reported pea epicotyl enzyme which catalyzes the conversion of ACC to ethylene had a high K m (389 mM) for ACC and readily converted KMB to ethylene. We show, moreover, that the pea enzyme catalyzes the conversion of AEC isomers to butene without stereodiscrimination. Because of its lack of stereospecificity, its low affinity for ACC and its utilization of KMB as a substrate, we conclude that the reported pea enzyme system is not related to the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Amino cyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - KMB 4-methylthio-2-oxobutanoic acid  相似文献   

20.
During the biosynthesis of anthocyanins in Petunia hybrida, the 3-hydroxyl group is glucosylated. Their supposed biosynthetic precursors, the dihydroflavonols, are glucosylated at the 7 or 4 positions. The question arose of whether these glucosides or the aglucones act as a substrate in anthocyanin synthesis. Using isolated flower buds of white flowering mutants that were blocked in an earlier step of biosynthesis, it was found that anthocyanin-3-glucosides and dihydroquercetin-7-glucoside were synthesized if dihydroquercetin, dihydroquercetin-7-glucoside, or dihydroquercetin-4-glucoside were used as precursors in these experiments. Intracellular dihydroquercetin-glucosides were not used as a substrate for anthocyanin synthesis. The results are explained by deglucosylation of dihydroquercetin-glucosides during uptake by isolated flower limbs. Dihydroquercetin-7-glucoside, formed intracellularly, is not available as a precursor for anthocyanins. We conclude that the aglucone form of dihydroquercetin acts as a substrate in anthocyanin biosynthesis.Abbreviations dHO dihydroquercetin - dHQ-7=g dihydroquercetin-7-glucoside - dHQ-4-g dihydroquercetin-4-glucoside  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号