首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present article, we have analyzed the effects of heat and mass transfer on Reiner Rivlin fluid model for blood flow through a tapered artery with a stenosis. The constitutive equations for a Reiner Rivlin fluid have been modelled in cylindrical coordinates. A perturbation series in dimensionless Reiner Rivlin fluid parameter (λ 1 ≪ 1) have been used to obtain explicit forms for the velocity, temperature, concentration, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different type of tapered arteries i.e. converging tapering, diverging tapering, non-tapered artery have been examined for different parameters of interest.  相似文献   

2.
本文考察了血管狭窄对血液流动的影响,血液以偶应力流体表示,并在求解过程中采用了在管壁上流体质点无相对涡量的边界条件,结果表明,和Young的经典工作相比流动阻抗和壁切应力大于同样程度狭窄下牛顿流体的相应值,偶应力流体对狭窄的敏感性大于牛顿流体;在狭窄发展过程中,偶应力流体的流量要小于牛顿流体的流量,和牛顿流体相比,这些结果更符合生理实际。  相似文献   

3.
In this study, the fundamental problem of the biomagnetic fluid flow in a lid driven cavity under the influence of a steady localized magnetic field is studied. The mathematical model used for the formulation of the problem is consistent with the principles of Ferrohydrodynamics (FHD) and Magnetohydrodynamics (MHD). The biomagnetic fluid is considered as a homogeneous Newtonian fluid and is treated as an electrically conducting magnetic fluid which also exhibits magnetization. A known biomagnetic fluid which exhibits such magnetic properties is blood. For the numerical solution of the problem, which is described by a coupled, non linear system of PDEs, with appropriate boundary conditions, the SIMPLE algorithm is used. The solution is obtained by the development of a numerical methodology using finite volumes on a staggered, properly stretched, grid. Results concerning the velocity indicate that the presence of the magnetic field influences considerably the flow field.  相似文献   

4.
Hemodynamic stresses are involved in the development and progression of vascular diseases. This study investigates the influence of mechanical factors on the hemodynamics of the curved coronary artery in an attempt to identify critical factors of non‐Newtonian models. Multiphase non‐Newtonian fluid simulations of pulsatile flow were performed and compared with the standard Newtonian fluid models. Different inlet hematocrit levels were used with the simulations to analyze the relationship that hematocrit levels have with red blood cell (RBC) viscosity, shear stress, velocity, and secondary flow. Our results demonstrated that high hematocrit levels induce secondary flow on the inside curvature of the vessel. In addition, RBC viscosity and wall shear stress (WSS) vary as a function of hematocrit level. Low WSS was found to be associated with areas of high hematocrit. These results describe how RBCs interact with the curvature of artery walls. It is concluded that although all models have a good approximation in blood behavior, the multiphase non‐Newtonian viscosity model is optimal to demonstrate effects of changes in hematocrit. They provide a better stimulation of realistic blood flow analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Flow dynamics plays an important role in the pathogenesis and treatment of cerebral aneurysms. The temporal and spatial variations of wall shear stress in the aneurysm are hypothesized to be correlated with its growth and rupture. In addition, the assessment of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils. This work describes the flow dynamics in a patient‐specific model of carotid artery with a saccular aneurysm under Newtonian and non‐Newtonian fluid assumptions. The model was obtained from three‐dimensional rotational angiography image data and blood flow dynamics was studied under physiologically representative waveform of inflow. The three‐dimensional continuity and momentum equations for incompressible and unsteady laminar flow were solved with a commercial software using non‐structured fine grid with 283 115 tetrahedral elements. The intra‐aneurysmal flow shows complex vortex structure that change during one pulsatile cycle. The effect of the non‐Newtonian properties of blood on the wall shear stress was important only in the arterial regions with high velocity gradients, on the aneurysmal wall the predictions with the Newtonian and non‐Newtonian blood models were similar. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The particle migration effects and fluid–particle interactions occurring in the flow of highly concentrated fluid–particle suspension in a spatially modulated channel have been investigated numerically using a finite volume method. The mathematical model is based on the momentum and continuity equations for the suspension flow and a constitutive equation accounting for the effects of shear‐induced particle migration in concentrated suspensions. The model couples a Newtonian stress/shear rate relationship with a shear‐induced migration model of the suspended particles in which the local effective viscosity is dependent on the local volume fraction of solids. The numerical procedure employs finite volume method and the formulation is based on diffuse‐flux model. Semi‐implicit method for pressure linked equations has been used to solve the resulting governing equations along with appropriate boundary conditions. The numerical results are validated with the analytical expressions for concentrated suspension flow in a plane channel. The results demonstrate strong particle migration towards the centre of the channel and an increasing blunting of velocity profiles with increase in initial particle concentration. In the case of a stenosed channel, the particle concentration is lowest at the site of maximum constriction, whereas a strong accumulation of particles is observed in the recirculation zone downstream of the stenosis. The numerical procedure applied to investigate the effects of concentrated suspension flow in a wavy passage shows that the solid particles migrate from regions of high shear rate to low shear rate with low velocities and this phenomenon is strongly influenced by Reynolds numbers and initial particle concentration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The effects of a velocity slip and an external magnetic field on the flow of biomagnetic fluid (blood) through a stenosed bifurcated artery are investigated by using ANSYS FLUENT. Blood is regarded as a non-Newtonian power-law fluid, and the magnetization and electrical conductivity are considered in the mathematical model. The no-slip condition is replaced by the first-order slip condition. The slip boundary condition and magnetic force are compiled in the solver by the user-defined function (UDF). Numerical solutions are obtained by the finite volume method based on a nonuniform grid structure. The accuracy and efficiency of the solver are verified through a comparison with the literature. The results are presented graphically for different parameter values, and the effects of the magnetic number, the magnetic source position, the vascular obstruction ratio, the slip parameter, and the power-law index on the flow and temperature fields are illustrated.  相似文献   

8.
The paper deals with the theoretical investigation of a fundamental problem of biomaguetic fluid flow through a porous medium subject to a magnetic field by using the principles of biomagnetic fluid dynamics (BFD). The study pertains to a situation where magnetization of the fluid varies with temperature. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a second-grade viscoelastic fluid. The walls of the channel are assumed to be stretchable, where the surface velocity is proportional to the longitudinal distance from the origin of coordinates. The problem is first reduced to solving a system of coupled nonlinear differential equations involving seven parameters. Considering blood as a biomagnetic fluid and using the present analysis, an attempt is made to compute some parameters of the blood flow by developing a suitable numerical method and by devising an appropriate finite difference scheme. The computational results are presented in graphical form, and thereby some theoretical predictions are made with respect to the hemodynamical flow of the blood in a hyperthermal state under the action of a magnetic field. The results clearly indicate that the presence of a magnetic dipole bears the potential so as to affect the characteristics of the blood flow in arteries to a significant extent during the therapeutic procedure of electromagnetic hyperthermia. The study will attract the attention of clinicians, to whom the results would be useful in the treatment of cancer patients by the method of electromagnetic hyperthermia.  相似文献   

9.
This paper presents an analytical study on the behavoiur of blood flow in an artery having a stenosis. This is basically formulated through the use of a suitable mathematical model. The arterial segment under consideration is simulated by an anisotropically elastic cylindrical tube filled with a viscous incompressible fluid representing blood. The analysis is carried out for an artery with mild local narrowing in its lumen forming a stenosis. Particular emphasis has been paid to the effect of the surrounding connective tissues on the motion of the arterial wall. Blood is treated as a Newtonian fluid. The analysis is restricted to propagation of small amplitude harmonic waves, generated due to the flow of blood whose wave length is large compared to the radius of the arterial segment. The effect of the shape of stenosis on the resistance to blood flow has been well illustrated quantitatively through numerical computations of the resulting expressions. A quantitative analysis is also made for the variation of the phase velocity, as well as the velocity of wave propagation and the flow rate, in order to illustrate the applicability of the model.  相似文献   

10.
徐春晖  黄文彬  徐泳 《力学季刊》2003,24(4):500-505
离散元法是分析散体力学行为的数值方法。存在填隙流体时,颗粒之间或颗粒与壁之间产生的法向挤压力和切向阻力、阻力矩,是湿颗粒离散元法的理论基础。二阶流体是以微小偏离牛顿流体本构而考虑时间影响的一种流体。它具有常粘度,并且第一和第二法向应力差正比于剪切率的平方。根据Reynolds润滑理论,采用小参数法,导出了存在填隙二阶流体时,圆球沿平行于平壁缓慢移动时流体的速度场和压力方程,进而求出切向阻力和阻力矩的解析解。有趣的是在推导时所得的速度场和压力方程形式比牛顿流体要复杂得多,但最终结果表明圆球沿平行于平壁移动时因填隙二阶流体引起的切向阻力和阻力矩与牛顿流体时的结果相同。  相似文献   

11.
The pulsatile flow of a two-phase model for blood flow through axisymmetric and asymmetric stenosed narrow arteries is analyzed, treating blood as a two-phase model with the suspension of all the erythrocytes in the core region as the Herschel-Bulkley material and plasma in the peripheral layer as the Newtonian fluid. The perturbation method is applied to solve the resulting non-linear implicit system of partial differential equations. The expressions for various flow quantities are obtained. It is found that the pressure drop, plug core radius, wall shear stress increase as the yield stress or stenosis height increases. It is noted that the velocity increases, longitudinal impedance decreases as the amplitude increases. For asymmetric stenosis, the wall shear stress increases non-linearly with the increase of the axial distance. The estimates of the increase in longitudinal impedance to flow of the two-phase Herschel-Bulkley material are significantly lower than those of the single-phase Herschel-Bulkley material. The results show the advantages of two-phase flow over single-phase flow in small diameter arteries with stenosis.  相似文献   

12.
Nomenclature  τ  wallshearstressγshearrateτy yieldstressηc Cassonviscosityktheconsistencyindexnnon_Newtonianindexτp shearstressofthepthelementωangularvelocityRvessel’sradiusCwavespeedM  magneticparameter (Hartmannnumber)u,w velocitycomponentinther_andz_directions,respectivelyP  pressureα  unsteadinessparameter k , R meanparametersTp relaxationtimeofthepthelementρ densityIntroductionTheimportancetoatherogenesisofarterialflowphenomenasuchasflowseparation ,recirculationands…  相似文献   

13.
A micropolar model for axisymmetric blood flow through an axially nonsymmetreic but radially symmetric mild stenosis tapered artery is presented. To estimate the effect of the stenosis shape, a suitable geometry has been considered such that the axial shape of the stenosis can be changed easily just by varying a parameter (referred to as the shape parameter). The model is also used to study the effect of the taper angle Ф. Flow parameters such as the velocity, the resistance to flow (the resistance impedance), the wall shear stress distribution in the stenotic region and its magnitude at the maximum height of the stenosis (stenosis throat) have been computed for different values of the shape parameter n, the taper angle Ф, the coupling number N and the micropolar parameter m. It is shown that the resistance to flow decreases with increasing the shape parameter n and the micropolar parameter m while it increases with increasing the coupling number N. So, the magnitude of the resistance impedance is higher for a micropolar fluid than that for a Newtonian fluid model. Finally, the velocity profile, the wall shear stress distribution in the stenotic region and its magnitude at the maximum height of the stenosis are discussed for different values of the parameters involved on the problem.  相似文献   

14.
Non-Newtonian effects in a channel with moving wall indentations are assessed numerically by a finite volume method for solving the unsteady incompressible Navier-Stokes equations and using a power-law model exhibiting shear thinning viscosity and Casson's model as the constitutive equations for the non-Newtonian fluid. The computations show that for a non-Newtonian fluid, there are differences in the velocity profiles and in the structure and size of the reversed flow regions as compared with the corresponding Newtonian fluid. The comparison of non-Newtonian and Newtonian wall shear stress reveals a slight decrease in the magnitude on the average for the non-Newtonian case, eventually resulting in the strength of the “wave train” being slightly weaker than those corresponding to a Newtonian fluid.  相似文献   

15.
We have studied the fully-developed free-convective flow of an electrically conducting fluid in a vertical channel occupied by porous medium under the influence of transverse magnetic field. The internal prefecture of the channel is divided into two regions; one region filled with micropolar fluid and the other region with a Newtonian fluid or both the regions filled by Newtonian fluids. Analytical solutions of the governing equations of fluid flow are found to be in excellent agreement with analytical prediction. Analytical results for the details of the velocity, micro-rotation velocity and temperature fields are shown through graphs for various values of physical parameters. It is noticed that Newtonian fluids prop up the linear velocity of the fluid in contrast to micropolar fluid. Also the skin friction coefficient at both the walls is derived and its numerical values are offered through tables.  相似文献   

16.
The pulsatile flow of blood through a catheterized artery is analyzed, assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a Casson fluid and the peripheral region of plasma as a Newtonian fluid. The resulting non-linear implicit system of partial differential equations is solved using perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The variations of these flow quantities with yield stress, catheter radius ratio, amplitude, pulsatile Reynolds number ratio and peripheral layer thickness are discussed. It is observed that the velocity distribution and flow rate decrease, while, the wall shear, width of the plug flow region and longitudinal impedance increase when the yield stress increases. It is also found that the velocity increases, but, the longitudinal impedance decreases when the thickness of the peripheral layer increases. The wall shear stress decreases non-linearly, while, the longitudinal impedance increases non-linearly when the catheter radius ratio increases. The estimates of the increase in the longitudinal impedance are considerably lower for the present two-fluid model than those of the single-fluid model.  相似文献   

17.
This paper reports a detailed numerical investigation on mixed convection flow of a polar fluid through a porous medium due to the combined effects of thermal and mass diffusion. The energy equation accounts for heat generation or absorption, while the nth order homogeneous chemical reaction between the fluid and the diffusing species is included in the mass diffusion equation. The governing equations of the linear momentum, angular momentum, energy and concentration are obtained in a non-similar form by introducing a suitable group of transformations. The final set of non-similar coupled non-linear partial differential equations is solved using an implicit finite-difference scheme in combination with quasi-linearization technique. The effects of various parameters on the velocity, angular velocity, temperature and concentration fields are investigated. Numerical results for the skin friction coefficient, wall stress of angular velocity, Nusselt number and Sherwood number are also presented.  相似文献   

18.
Ali  A.  Hussain  M.  Anwar  M. S.  Inc  M. 《应用数学和力学(英文版)》2021,42(11):1675-1684

In this study, a mathematical model is formulated to examine the blood flow through a cylindrical stenosed blood vessel. The stenosis disease is caused because of the abnormal narrowing of flow in the body. This narrowing causes serious health issues like heart attack and may decrease blood flow in the blood vessel. Mathematical modeling helps us analyze such issues. A mathematical model is considered in this study to explore the blood flow in a stenosis artery and is solved numerically with the finite difference method. The artery is an elastic cylindrical tube containing blood defined as a viscoelastic fluid. A complete parametric analysis has been done for the flow velocity to clarify the applicability of the defined problem. Moreover, the flow characteristics such as the impedance, the wall shear stress in the stenotic region, the shear stresses in the throat of the stenosis and at the critical stenosis height are discussed. The obtained results show that the intensity of the stenosis occurs mostly at the highest narrowing areas compared with all other areas of the vessel, which has a direct impact on the wall shear stress. It is also observed that the resistive impedance and wall shear pressure get the maximum values at the critical height of the stenosis.

  相似文献   

19.
Both clinical and post mortem studies indicate that, in humans, the carotid sinus of the carotid artery bifurcation is one of the favored sites for the genesis and development of atherosclerotic lesions. Hemodynamic factors have been suggested to be important in atherogenesis. To understand the correlation between atherogenesis and fluid dynamics in the carotid sinus, the blood flow in artery was simulated numerically. In those studies, the property of blood was treated as an incompressible, Newtonian fluid. In fact, however, the blood is a complicated non-Newtonian fluid with shear thinning and viscoelastic properties, especially when the shear rate is low. A variety of non-Newtonian models have been applied in the numerical studies. Among them, the Casson equation was widely used. However, the Casson equation agrees well only when the shear rate is less than 10 s-1. The flow field of the carotid bifurcation usually covers a wide range of shear rate. We therefore believe that it may not be sufficient to describe the property of blood only using the Casson equation in the whole flow field of the carotid bifurcation. In the present study, three different blood constitutive models, namely, the Newtonian, the Casson and the hybrid fluid constitutive models were used in the flow simulation of the human carotid bifurcation. The results were compared among the three models. The results showed that the Newtonian model and the hybrid model had verysimilar distributions of the axial velocity, secondary flow and wall shear stress, but the Casson model resulted in significant differences in these distributions from the other two models. This study suggests that it is not appropriate to only use the Casson equation to simulate the whole flow field of the carotid bifurcation, and on the other hand, Newtonian fluid is a good approximation to blood for flow simulations in the carotid artery bifurcation.  相似文献   

20.
The transient problem of coupled heat and mass transfer of a micropolar fluid in magneto‐hydrodynamic free convection from a vertical infinite porous plate with an exponentially decaying heat generating considering the viscous dissipation and ohmic heating effects is studied. Joule heating must be considered when the viscous dissipation and the Prandtl number are large. The non‐dimensional equations for the conservation of mass, momentum, energy and concentration are solved by means a numerical technique based on electric analogy (network simulation method). This method provides the numerical response of the system by running the network in circuit resolution software with the solution to both transient and steady‐state problems at the same time, and its programming does not require manipulation of the sophisticated mathematical software that is inherent in other numerical methods. The effects of the material parameters, viscous dissipation, internal generation and Joule heating on velocity, angular momentum and temperature fields across the boundary layer are investigated. In addition, the skin‐friction coefficient, couple stress coefficient, Nusselt number and Sherwood number are shown in tabular form. The numerical results for velocity and temperature distributions of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号