共查询到20条相似文献,搜索用时 64 毫秒
1.
基于模糊C均值(FCM)和局部自适应聚类(LAC)提出一种针对高维数据的联机局部自适应模糊C均值聚类算法(OLAFCM).OLAFCM通过为各类属性分别赋以相应的局部权重,使各类属性分布在不同属性组合的张量子空间内,从而有效降低采用全局降维方法造成的信息损失,同时适合聚类数据流.最后,在人工模拟和真实数据集上验证OLAFCM比之现有基于全局降维的划分联机聚类算法具有更好的性能. 相似文献
2.
快速模糊C均值聚类的图像分割方法 总被引:11,自引:1,他引:10
模糊C均值(FCM)聚类算法广泛应用于图像的自动分割,但标准的FCM算法存在计算量大,运算速度慢等问题。对FCM算法进行改进,提出了一种快速FCM图像分割算法(FFCM),该算法将图像从像素空间映射到其灰度直方图特征空间,并在此基础上,充分利用像素的邻域特性,对隶属度函数做一定改进,实验结果表明该算法能快速有效地分割图像,并具有较好的抗噪能力。 相似文献
3.
一种协同的FCPM模糊聚类算法 总被引:1,自引:0,他引:1
比重隶属度模糊聚类(FCPM)算法可从不同角度解决聚类问题,取得较好效果。协同聚类算法利用不同特征子集之间的协同关系,并与其它聚类算法相结合,可提高原有的聚类性能。文中在FCPM聚类算法的基础上进行改进,将其与协同聚类算法相结合,提出一种协同的FCPM聚类算法。该算法在原有FCPM聚类算法的基础上,提高对数据集的聚类效果。在对数据集Wine和Iris进行测试的结果表明,该方法优于FCPM算法,说明该方法的有效性。 相似文献
4.
模糊C均值聚类图像分割的改进遗传算法研究 总被引:3,自引:0,他引:3
基于模糊C均值(FCM)聚类算法,并利用遗传算法全局随机搜索的特点,提出了一种图像分割的改进遗传算法。该算法首先采用一种初值化算法确定合适的遗传算法的初始搜索范围,然后对遗传算法中的编码方式、交叉算子、变异算子等参数进行了一些适当改进,进而给出了该算法的理论推导和算法的具体实现步骤。该算法除了解决模糊C均值聚类算法在医学图像分割中容易陷入局部最优解的问题,而且采用的初值化算法比标准的遗传模糊C均值聚类算法能确定更合适的遗传算法的初始搜索范围,从而加速了遗传算法的收敛过程。实验表明,该方法相对于标准的遗传模糊C均值聚类算法,效果要好得多。 相似文献
5.
在对Web站点进行优化时,为了降低成本,往往需要在不改变硬件和网络配置的情况下提高网站的性能.此时,对构成网站的网页的修改就成为提高站点性能的主要途径.对网页的访问速度的测量已有很多成熟的方法,但是如何根据测试的结果指定合理的优化策略,却鲜有论述.本文使用FCM算法对测试结果和网站日志进行聚类分析,从而得到一个良好的优化策略. 相似文献
6.
通过分析影像数据的特点,利用直方图的统计特性,结合HCM收敛速度快的优点,提出了一种基于直方图加权的半模糊化的聚类算法,此方法结合了全局与局部信息,提高了聚类的速度,改善了聚类的效果;采用Lena和脑影像实验与传统算法作比较证明了该算法的效果更好,并对一副97 658k的影像进行处理,证明了该算法效率高。 相似文献
7.
针对非充分数据集及噪声对聚类分析的干扰,基于模糊C均值(FCM)框架下的聚类技术,即一般化的增强模糊划分聚类算法(GIFP-FCM),探讨具有迁移学习能力的聚类方法--融入迁移学习机制的GIFP-FCM算法(T-GIFP-FCM)。该算法通过有效利用历史相关场景(域)总结得到的知识来指导当前场景(域)中信息不足时的聚类任务,从而提高聚类效果。通过在模拟数据集及真实数据集上的仿真实验,结果显示文中算法较之传统算法在处理信息不足任务时具有更佳的性能。 相似文献
8.
模糊C均值( FCM)聚类算法最终形成的聚类质量会受到初始值的设定、簇的个数选定及参数选择等多方面因素的影响。文中对最近发表的5种代表性聚类有效性指数在不同的数据维数、聚类个数和参数等条件下对FCM的聚类有效性评价结果进行对比分析。实验结果表明基于类内紧致度和类间离散度比值的聚类有效性指数对数据维度及噪声较为鲁棒,基于隶属度的聚类有效性指数不适于高维数据等,上述结果可帮助研究人员在不同的应用环境下选择合适的模糊聚类有效性函数。 相似文献
9.
为解决传统聚类算法不能处理非球形分布数据的问题,文犤5犦提出了一种自适应k近邻聚类算法。该算法在无需聚类数目的前提下,能有效解决非球形分布数据的聚类问题。但进一步的研究表明,该算法在处理带“奇异”样本的数据集时失去效果。为此,该文给出了一种改进的自适应k近邻聚类算法。仿真结果表明,新算法不仅保持了原算法在处理非球形分布数据时的优良特性,还成功解决了“奇异”样本问题。 相似文献
10.
YU Lin 《数字社区&智能家居》2008,(14)
电信用户的通话行为聚类分析是一个新的研究领域,属于数据挖掘范畴。为了对用户行为进行有针对性的分析挖掘,发现客户行为中隐藏的、有用的、未曾预料的知识,采用了模糊C均值(FCM)聚类算法,以模糊数学理论知识作为客户行为聚类分析的方法,为电信企业客户分析提供了量化依据,并采用Matlab为计算工具,给出了一个聚类分析实例,并初步建立了通话行为模型识别机制。实验证明,本文采用的模糊聚类方法得到了满意的分析结果。 相似文献
11.
基于K近邻的故障检测(FD-KNN)算法可以有效处理非线性、多模态的故障检测问题,但在过程故障检测中存在故障类型多、测量变量复杂等缺陷。将模糊C均值聚类(FCM)和K近邻(KNN)相结合,提出一种新的故障检测方法FCM-KNN。该方法与传统算法相比较,故障检测率有明显的提升。首先,应用FCM聚类将多模态训练集按模态聚类,同时根据样本与各聚类中心的距离比例来得到样本对于每个聚类中心的隶属度;再根据隶属度来判断样本所属模态,进而在各个模态下完成基于KNN的故障检测。通过多模态仿真实例进一步验证该方法的有效性。该方法具有检测率高、漏报和误报率低等优点,可有效提高检测效果。 相似文献
12.
模糊聚类有效性指标主要是为了解决模糊C-均值算法需要事先给定最佳聚类数的缺陷,但是现有的大多数模糊聚类有效性指标一般过于依赖聚类质心,使得这类指标在含有紧邻类与大小、密度差异大的数据集上无法准确地判断最佳聚类数。为了缓解这个问题,提出了新聚类有效性指标WS。WS指标在一定程度上考虑了最大最小隶属度法则与模糊集偏差,从而全面展示了数据集的整体信息。在人工与真实数据集上,评估WS指标与现有一些指标的有效性,新指标展现出了较高的准确性。在不同的模糊度下,WS指标表现出了较好的鲁棒性。 相似文献
13.
针对混合属性数据集聚类精度低的问题,本文提出一种基于改进距离度量的半监督模糊均值聚类(Fuzzy C-means,FCM)算法.首先,在数据集中针对类别属性进行预处理,并设置相应的相异度阈值;将传统聚类距离度量与改进的Jaccard距离度量结合,确定混合属性数据集的距离度量函数;最后,将所得距离度量函数与传统半监督FCM算法相结合,并在滚动轴承的不同复合故障数据的特征集中进行聚类.实验表明,该算法能在含无序属性的混合属性数据集的聚类中取得更好的聚类效果. 相似文献
14.
15.
软硬结合的快速模糊C-均值聚类算法的研究 总被引:2,自引:1,他引:1
讨论的是对模糊C-均值聚类方法的改进,在原有的模糊C-均值算法的基础上,提出一种软硬结合的快速模糊C-均值聚类算法。快速模糊C-均值聚类算法是在模糊C-均值聚类算法之前加入一层硬C-均值聚类算法。硬聚类算法能比模糊聚类算法以高得多的速度完成,将硬聚类中心作为模糊聚类中心的迭代初值,从而提高模糊C-均值聚类算法的收敛速度,这对于大量数据的聚类是很有意义的。用数据仿真验证了这种快速模糊C-均值聚类算法比模糊C-均值算法迭代调整过程短,收敛速度快,聚类效果好。 相似文献
16.
研究白细胞图像分类识别中有效的图像分割与特征提取方法,以提高白细胞图像的正确识别率.由于某些白细胞(粒细胞)中颗粒的存在,严重影响细胞核与细胞质区域的正确分割,通过将空间信息与核函数融入模糊C-均值聚类(FCM)算法,提出一种改进的FCM算法.应用该算法对白细胞图像进行分割,并采用数学形态学方法对分割后的图像进行处理,获得了很好的分割效果,解决了粒细胞的质核分割难题.对于细胞的纹理特征提取,通过对局部二值模式(LBP)中阈值参数的模糊化,建立了基于局部模糊模式(LFP)的纹理特征提取算法.运用本文方法进行图像分割和纹理提取,以支持向量机作为分类器,对CellAtlas的100幅白细胞图像进行了分类识别的实验,结果表明白细胞的正确识别率达到93%. 相似文献
17.
基于方差权重矩阵模型的高维数据子空间聚类算法 总被引:1,自引:1,他引:0
在处理高维数据时,聚类的工作往往归结为对子空间的划分问题。大量的真实实验数据表明,相同的属性对于高维数据的每一类子空间而言并不是同等重要的,因此,在FCM算法的基础上引入了方差权重矩阵模型,创造出了新的聚类算法称之为WM-FCM。该算法通过不断地聚类迭代调整权重值,使得其重要的属性在各个子空间内更为显著地表征出来,从而达到更好的聚类效果。从基于模拟数据集以及UCI数据集的实验结果表明,该改进的算法是有效的。 相似文献
18.
刘悦婷 《自动化与仪器仪表》2012,(2):116-119
针对化工生产过程的安全性问题,提出基于混合蛙跳(shuffled frog leaping algorithm,SFLA)的FCM聚类算法。该算法引入寻优能力强的SFLA求得最优解作为FCM算法的初始聚类中心,然后利用FCM算法优化初始聚类中心,最后求得全局最优解,从而有效避免了F C M算法易陷入局部最优和对初始值敏感的缺点。将该算法用于化工生产状态数据的聚类分析,实验结果表明,本文算法与F C M聚类算法相比,提高了算法的寻优能力,聚类效果更好;并且能够快速、客观地对化工生产过程的状态进行判别,为其安全运行提供了保障。 相似文献
19.
进行肺部肿瘤计算机辅助诊断的关键问题是实现对病变组织的正确、快速分割,为此,提出了一种能够有效提高局部邻域像素自适应程度的快速模糊C均值聚类肺结节分割方法.首先构造像素与邻域窗口空间关系的二维向量表示,获得不同向量值的统计分布规律;然后用改进的空间函数综合考虑中心像素与单个相邻像素间的灰度相似度、与邻域窗口的空间相似度对模糊隶属度的贡献,动态地调整邻域像素的隶属度对中心像素的影响;最后给出该方法在迭代计算效率和局部自适应方面的改进.实验结果表明,该方法对血管粘连型、胸膜粘连型和毛玻璃肺结节的分割效果优于其他典型算法. 相似文献
20.
目的 传统FCM算法及其改进算法均只采用隶属度作为分割判据实现图像分割。然而,在分割过程中聚类中心易受到同质区域内几何噪声的影响,导致此类算法难以有效分割具有几何噪声的图像。为了解决这一类问题,提出一种利用包含度和隶属度的遥感影像模糊分割算法。方法 该算法假设同一聚类对每个像素都有不同程度的包含度,将包含度作为一种新测度来描述聚类与像素间关系,并将包含度纳入目标函数中。该算法通过迭代最小化目标函数来得到最优的隶属度和包含度,然后,通过反模糊化隶属度和包含度之积实现带有几何噪声的遥感图像的分割。结果 采用本文算法分别对模拟图像,真实遥感影像进行分割实验,并与FCM算法和FLICM算法进行对比,定性结果表明,对含有几何噪声的区域,提出算法的用户精度和产品精度均高于FCM算法和FLICM算法,且总精度和Kappa值也高于对比算法。实验结果表明,本文算法能够抵抗几何噪声对图像分割的影响,且分割精度远远高于其他两种算法的分割精度。结论 提出算法通过考虑聚类对像素的包含性,能够有效抵抗几何噪声对图像分割的影响,使得算法具有较高的抗几何噪声能力,进而提高该算法对含有几何噪声图像的分割精度。提出算法适用于包含几何噪声的高分辨率遥感图像,具有很好的抗几何噪声性。 相似文献