首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A methodology is presented for generating enrichment functions in generalized finite element methods (GFEM) using experimental and/or simulated data. The approach is based on the proper orthogonal decomposition (POD) technique, which is used to generate low‐order representations of data that contain general information about the solution of partial differential equations. One of the main challenges in such enriched finite element methods is knowing how to choose, a priori, enrichment functions that capture the nature of the solution of the governing equations. POD produces low‐order subspaces, that are optimal in some norm, for approximating a given data set. For most problems, since the solution error in Galerkin methods is bounded by the error in the best approximation, it is expected that the optimal approximation properties of POD can be exploited to construct efficient enrichment functions. We demonstrate the potential of this approach through three numerical examples. Best‐approximation studies are conducted that reveal the advantages of using POD modes as enrichment functions in GFEM over a conventional POD basis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents improvements to three‐dimensional crack propagation simulation capabilities of the generalized finite element method. In particular, it presents new update algorithms suitable for explicit crack surface representations and simulations in which the initial crack surfaces grow significantly in size (one order of magnitude or more). These simulations pose problems in regard to robust crack surface/front representation throughout the propagation analysis. The proposed techniques are appropriate for propagation of highly non‐convex crack fronts and simulations involving significantly different crack front speeds. Furthermore, the algorithms are able to handle computational difficulties arising from the coalescence of non‐planar crack surfaces and their interactions with domain boundaries. An approach based on moving least squares approximations is developed to handle highly non‐convex crack fronts after crack surface coalescence. Several numerical examples are provided, which illustrate the robustness and capabilities of the proposed approaches and some of its potential engineering applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This paper addresses the issue of a p‐adaptive version of the generalized finite element method (GFEM). The technique adopted here is the equilibrated element residual method, but presented under the GFEM approach, i.e., by taking into account the typical nodal enrichment scheme of the method. Such scheme consists of multiplying the partition of unity functions by a set of enrichment functions. These functions, in the case of the element residual method are monomials, and can be used to build the polynomial space, one degree higher than the one of the solution, in which the error functions is approximated. Global and local measures are defined and used as error estimator and indicators, respectively. The error indicators, calculated on the element patches that surrounds each node, are used to control a refinement procedure. Numerical examples in plane elasticity are presented, outlining in particular the effectivity index of the error estimator proposed. Finally, the ‐adaptive procedure is described and its good performance is illustrated by the last numerical example. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the numerical modelling of complete sliding contact and its associated singularity is carried out using the partition of unity finite element method. Sliding interfaces in engineering components lead to crack nucleation and growth in the vicinity of the contact zone. To accurately capture the singular stress field at the contact corner, we use the partition of unity framework to enrich the standard displacement‐based finite element approximation by additional (enriched) functions. These enriched functions are derived from the analytical expression of the asymptotic displacement field in the vicinity of the contact corner. To characterize the intensity of the singularity, a domain integral formulation is adopted to compute the generalized stress intensity factor (GSIF). Numerical results on benchmark problems are presented to demonstrate the improved accuracy and benefits of this technique. We conduct an investigation on issues pertaining to the extent of enrichment, accurate numerical integration of weak‐form integrals and the rate of convergence in energy. The use of partition of unity enrichment leads to accurate estimations of the GSIFs on relatively coarse meshes, which is particularly beneficial for modelling non‐linear sliding contacts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we analyse the p‐convergence of a new version of the generalized finite element method (generalized FEM or GFEM) which employs mesh‐based handbook functions which are solutions of boundary value problems in domains extracted from vertex patches of the employed mesh and are pasted into the global approximation by the partition of unity method (PUM). We show that the p‐version of our GFEM is capable of achieving very high accuracy for multiscale problems which may be impossible to solve using the standard FEM. We analyse the effect of the main factors affecting the accuracy of the method namely: (a) The data and the buffer included in the handbook domains, and (b) The accuracy of the numerical construction of the handbook functions. We illustrate the robustness of the method by employing as model problem the Laplacian in a domain with a large number of closely spaced voids. Similar robustness can be expected for problems of heat‐conduction and elasticity set in domains with a large number of closely spaced voids, cracks, inclusions, etc. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
An extended finite element method (X‐FEM) for three‐dimensional crack modelling is described. A discontinuous function and the two‐dimensional asymptotic crack‐tip displacement fields are added to the finite element approximation to account for the crack using the notion of partition of unity. This enables the domain to be modelled by finite elements with no explicit meshing of the crack surfaces. Computational geometry issues associated with the representation of the crack and the enrichment of the finite element approximation are discussed. Stress intensity factors (SIFs) for planar three‐dimensional cracks are presented, which are found to be in good agreement with benchmark solutions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
The generalized finite element method (GFEM) was introduced in Reference 1 as a combination of the standard FEM and the partition of unity method. The standard mapped polynomial finite element spaces are augmented by adding special functions which reflect the known information about the boundary value problem and the input data (the geometry of the domain, the loads, and the boundary conditions). The special functions are multiplied with the partition of unity corresponding to the standard linear vertex shape functions and are pasted to the existing finite element basis to construct a conforming approximation. The essential boundary conditions can be imposed exactly as in the standard FEM. Adaptive numerical quadrature is used to ensure that the errors in integration do not affect the accuracy of the approximation. This paper gives an example of how the GFEM can be developed for the Laplacian in domains with multiple elliptical voids and illustrates implementation issues and the superior accuracy of the GFEM versus the standard FEM. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents high‐order implementations of a generalized finite element method for through‐the‐thickness three‐dimensional branched cracks. This approach can accurately represent discontinuities such as triple joints in polycrystalline materials and branched cracks, independently of the background finite element mesh. Representative problems are investigated to illustrate the accuracy of the method in combination with various discretizations and refinement strategies. The combination of local refinement at crack fronts and high‐order continuous and discontinuous enrichments proves to be an excellent combination which can deliver convergence rates close to that of problems with smooth solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
In spite of significant advancements in automatic mesh generation during the past decade, the construction of quality finite element discretizations on complex three‐dimensional domains is still a difficult and time demanding task. In this paper, the partition of unity framework used in the generalized finite element method (GFEM) is exploited to create a very robust and flexible method capable of using meshes that are unacceptable for the finite element method, while retaining its accuracy and computational efficiency. This is accomplished not by changing the mesh but instead by clustering groups of nodes and elements. The clusters define a modified finite element partition of unity that is constant over part of the clusters. This so‐called clustered partition of unity is then enriched to the desired order using the framework of the GFEM. The proposed generalized finite element method can correctly and efficiently deal with: (i) elements with negative Jacobian; (ii) excessively fine meshes created by automatic mesh generators; (iii) meshes consisting of several sub‐domains with non‐matching interfaces. Under such relaxed requirements for an acceptable mesh, and for correctly defined geometries, today's automated tetrahedral mesh generators can practically guarantee successful volume meshing that can be entirely hidden from the user. A detailed technical discussion of the proposed generalized finite element method with clustering along with numerical experiments and some implementation details are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
An overview of the extended/generalized finite element method (GEFM/XFEM) with emphasis on methodological issues is presented. This method enables the accurate approximation of solutions that involve jumps, kinks, singularities, and other locally non‐smooth features within elements. This is achieved by enriching the polynomial approximation space of the classical finite element method. The GEFM/XFEM has shown its potential in a variety of applications that involve non‐smooth solutions near interfaces: Among them are the simulation of cracks, shear bands, dislocations, solidification, and multi‐field problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
An a posteriori error estimator is proposed in this paper for the p‐ and hp‐versions of the finite element method in two‐dimensional linear elastostatic problems. The local error estimator consists in an enhancement of an error indicator proposed by Bertóti and Szabó (Int. J. Numer. Meth. Engng. 1998; 42 :561–587), which is based on the minimum complementary energy principle. In order to obtain the local error estimate, this error indicator is corrected by a factor which depends only on the polynomial degree of the element. The proposed error estimator shows a good effectivity index in meshes with uniform and non‐uniform polynomial distributions, especially when the global error is estimated. Furthermore, the local error estimator is reliable enough to guide p‐ and hp‐adaptive refinement strategies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
We describe a new version of the moving particle finite element method (MPFEM) that provides solutions within a C0 finite element framework. The finite elements determine the weighting for the moving partition of unity. A concept of ‘General Shape Function’ is proposed which extends regular finite element shape functions to a larger domain. These are combined with Shepard functions to obtain a smooth approximation. The Moving Particle Finite Element Method combines desirable features of finite element and meshfree methods. The proposed approach, in fact, can be interpreted as a ‘moving partition of unity finite element method’ or ‘moving kernel finite element method’. This method possesses the robustness and efficiency of the C0 finite element method while providing at least C1 continuity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we report the development of two new enrichment techniques for the method of finite spheres, a truly meshfree method developed for the solution of boundary value problems on geometrically complex domains. In the first method, the enrichment functions are multiplied by a weight function with compact support, while in the second one a floating ‘enrichment node’ is introduced. The scalability of the enrichment bubbles offers flexibility in localizing the spatial extent to which the enrichment field is applied. The bubbles are independent of the underlying geometric discretization and therefore provide a means of achieving convergence without excessive refinement. Several numerical examples involving problems with singular stress fields are provided demonstrating the effectiveness of the enrichment schemes and contrasting them to traditional ‘geometry‐dependent’ enrichment strategies in which one or more nodes associated with the geometric discretization of the domain are enriched. An additional contribution of this paper is the use of a meshfree numerical integration technique for computing the J‐integral using the domain integral method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we replace the asymptotic enrichments around the crack tip in the extended finite element method (XFEM) with the semi‐analytical solution obtained by the scaled boundary finite element method (SBFEM). The proposed method does not require special numerical integration technique to compute the stiffness matrix, and it improves the capability of the XFEM to model cracks in homogeneous and/or heterogeneous materials without a priori knowledge of the asymptotic solutions. A Heaviside enrichment is used to represent the jump across the discontinuity surface. We call the method as the extended SBFEM. Numerical results presented for a few benchmark problems in the context of linear elastic fracture mechanics show that the proposed method yields accurate results with improved condition number. A simple code is annexed to compute the terms in the stiffness matrix, which can easily be integrated in any existing FEM/XFEM code. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Problems of multiple scales of interest or of locally nonsmooth solutions may often involve heterogeneous media. These problems are usually very demanding in terms of computations with the conventional finite element method. On the other hand, different enriched finite element methods such as the partition of unity, which proved to be very successful in treating similar problems, are developed and studied for homogeneous media. In this work, we present a new idea to extend the partition of unity finite element method to treat heterogeneous materials. The idea is studied in applications to wave scattering and heat transfer problems where significant advantages are noted over the standard finite element method. Although presented within the partition of unity context, the same enrichment idea can also be extended to other enriched methods to deal with heterogeneous materials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A recent approach to fracture modeling has combined the extended finite element method (XFEM) with cohesive zone models. Most studies have used simplified enrichment functions to represent the strong discontinuity but have lacked an analytical basis to represent the displacement gradients in the vicinity of the cohesive crack. In this study enrichment functions based upon an existing analytical investigation of the cohesive crack problem are proposed. These functions have the potential of representing displacement gradients in the vicinity of the cohesive crack and allow the crack to incrementally advance across each element. Key aspects of the corresponding numerical formulation and enrichment functions are discussed. A parameter study for a simple mode I model problem is presented to evaluate if quasi‐static crack propagation can be accurately followed with the proposed formulation. The effects of mesh refinement and mesh orientation are considered. Propagation of the cohesive zone tip and crack tip, time variation of the cohesive zone length, and crack profiles are examined. The analysis results indicate that the analytically based enrichment functions can accurately track the cohesive crack propagation of a mode I crack independent of mesh orientation. A mixed mode example further demonstrates the potential of the formulation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Static fracture analyses in two‐dimensional linear magnetoelectroelastic (MEE) solids is studied by means of the extended finite element method (X‐FEM). In the X‐FEM, crack modeling is facilitated by adding a discontinuous function and the crack‐tip asymptotic functions to the standard finite element approximation using the framework of partition of unity. In this study, media possessing fully coupled piezoelectric, piezomagnetic and magnetoelectric effects are considered. New enrichment functions for cracks in transversely isotropic MEE materials are derived, and the computation of fracture parameters using the domain form of the contour interaction integral is presented. The convergence rates in energy for topological and geometric enrichments are studied. Excellent accuracy of the proposed formulation is demonstrated on benchmark crack problems through comparisons with both analytical solutions and numerical results obtained by the dual boundary element method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The numerical analysis of large numbers of arbitrarily distributed discrete thin fibres embedded in a continuum is a computationally demanding process. In this contribution, we propose an approach based on the partition of unity property of finite element shape functions that can handle discrete thin fibres in a continuum matrix without meshing them. This is made possible by a special enrichment function that represents the action of each individual fibre on the matrix. Our approach allows to model fibre‐reinforced materials considering matrix, fibres and interfaces between matrix and fibres individually, each with its own elastic constitutive law. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号