首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
SiCp/Al-Si复合材料中SiC/Al界面处亚晶铝带的研究   总被引:1,自引:0,他引:1  
通过利用TEM研究SiCp/Al-Si昨合材料发现,SiC/Al界面结合紧密,在靠近SiC界面的Ala基体中,有一层厚度小于1μm的“亚晶铝带”,它紧靠SiC表面形成,与远离SiC的Al基体有几度的位向差,这种“亚晶铝带”在SiC/Al界面上普遍存在,其内有大量位错。  相似文献   

2.
通过利用 TEM研究 Si Cp/ Al- Si复合材料发现 :Si C/ Al界面结合紧密 ,在靠近 Si C界面的 Al基体中 ,有一层厚度小于 1μm的“亚晶铝带”,它紧靠 Si C表面形成 ,与远离 Si C的 Al基体有几度的位向差 ;这种“亚晶铝带”在 Si C/ Al界面上普遍存在 ,其内有大量位错。  相似文献   

3.
用TEM研究了离心铸造和挤压铸造的SiCp/ZL109复合材料,发现Si优先在SiC表面上形核、长大,并形成大量"界面Si"及SiC/Si界面.SiC与Si之间不存在固定的晶体学位向关系,但存在(1101)sic//(111)si,[1120]sic∥[112]si优先出现的位向关系,而(0001)sic∥(111)si不是优先出现的位向关系.  相似文献   

4.
莫来石纤维/ZL 109 复合材料强度分散的统计分析   总被引:2,自引:0,他引:2       下载免费PDF全文
用挤压铸造工艺获得了拉伸强度较高并且强度数据分散度较小的莫来石纤维/ZL 109 复合材料。用W eibull 方法分析该复合材料的拉伸强度值的分布状况, 得到比较大的W eibull 模量。统计分析了复合材料中纤维体积分数和拉伸断口面上的纤维体积分数。结果表明, 纤维的分布在宏观上是随机的而在微观上是不均匀的, 与观察面法线呈小角度的纤维体积分数同与观察面法线成大角度的纤维体积分数比较接近; 在断口面上与拉伸方向呈大角度的纤维体积分数同与拉伸方向呈小角度的纤维体积分数相差较大。认为该复合材料破坏的主要原因在于与拉伸方向呈大角度的纤维与基体的界面脱粘。拉伸强度数据分散的原因在于微观上与拉伸方向呈大角度的纤维分布的不均匀。   相似文献   

5.
用TEM观察到了莫来石短纤维/ZL109复合材料基体与纤维界面存在氧化膜,并且通过分析证明该氧化膜为γ-Al2O3。  相似文献   

6.
碳化硅纤维增强碳化硅复合材料(SiC/SiC)是极具前景的高温结构材料。通过先驱体浸渍裂解(PIP)工艺分别制备了PyC界面和CNTs界面SiC/SiC复合材料, 对两种SiC/SiC复合材料的整体力学性能以及界面剪切强度等进行了测试表征, 并对材料中裂纹的产生与扩展进行了原位观测。结果表明, 两种界面SiC/SiC复合材料弯曲强度相近, 但PyC界面SiC/SiC复合材料的断裂韧性约为CNTs界面SiC/SiC复合材料的两倍。在PyC界面SiC/SiC复合材料中, 裂纹沿纤维-基体界面扩展, PyC涂层能够偏转或阻止裂纹, 材料呈现伪塑性断裂特征; 而在CNTs界面SiC/SiC复合材料中, 裂纹在扩展路径上遇到界面并不偏转, 初始裂纹最终发展为主裂纹, 材料呈现脆性断裂模式。  相似文献   

7.
为研究预制体结构及界面对三维编织SiC/SiC复合材料拉伸性能的影响,采用先驱体浸渍裂解法(PIP)分别制备了三维四向和三维五向SiC/SiC复合材料,并引入热解炭/碳化硅(PyC/SiC)复合界面层,进行拉伸性能测试和断口形貌观察。结果表明,三维五向SiC/SiC复合材料拉伸性能优于三维四向SiC/SiC复合材料,三维五向SiC/SiC复合材料的拉伸强度、模量和断裂应变分别是三维四向SiC/SiC复合材料的1.22倍、1.25倍、1.43倍,且比三维四向SiC/SiC复合材料具有更好的强度可靠性。这是由于三维五向SiC/SiC复合材料增加了受力方向的纤维含量,限制了纤维在外力作用下的转动和变形,起到定型和稳固作用。添加PyC/SiC复合界面层,三维五向SiC/SiC复合材料的拉伸强度、模量及断裂应变分别提高了21.7%、15.0%和11.0%。界面的存在可以保护纤维,调节纤维与基体之间的热应力,受力时诱使裂纹偏转和分叉,消耗能量,提高三维五向SiC/SiC复合材料的拉伸性能。   相似文献   

8.
K2O·8TiO2W/ZL109复合材料的制备、性能以及界面结构   总被引:2,自引:1,他引:2       下载免费PDF全文
本文采用挤压铸造方法制备出钛酸钾晶须增强ZL109复合材料(K2O·8TiO2w/ZL109 composite),该复合材料的室温和300℃下的抗拉强度与基体金属相当,而在200℃下的抗拉强度却大大高于基体金属。作者用高分辨率透射电镜对该复合材料进行了研究。发现在晶须与铝之间存在着TiO过渡层。  相似文献   

9.
硅酸铝/ZL109复合材料的纤维定向及其磨损特征   总被引:1,自引:0,他引:1  
本文提出了一种纤维定向金属基复合材料的新方法,研究了复合材料在垂直和平行于纤维方向磨面的磨损形貌,分析了造成垂直纤维磨面的耐磨性较平行纤维磨面更高的原因。研究结果表明,本方法为一种可行的金属基复合材料的纤维定向分布方法  相似文献   

10.
对含有几种典型界面结构和SiC纳米线的CVI-SiC/SiC复合材料的弯曲性能和断裂韧性进行了比较研究. 研究表明: 界面涂层对SiC/SiC的力学性能至关重要, 120nm厚的碳界面涂层使材料的强度与韧性都增加一倍; 在用140nm厚的SiC层将该碳层分为更薄的两层, 形成C/SiC/C多层界面涂层时, 材料的强度没有明显的变化, 而断裂韧性则略有提高. 对基体中弥散分布有SiC纳米线的SiC/SiC的力学性能研究表明, SiC纳米线具有非常高的强化效率, 使SiC/SiC复合材料具有更高的强度和韧性.  相似文献   

11.
SiC(Nicalon)/Al复合材料的界面性能   总被引:1,自引:0,他引:1       下载免费PDF全文
本文建立了国内第一台复合材料界面强度原位测试仪(ISISTI).对SiC(Nicalon)/Al复合材料中选定的单纤维进行了顶出测试,并对界面结合强度进行了分析.结果表明:SiC(Nlcalon)/Al复合材料的界面结合强度与复合工艺条件之间具有明显的对应关系.本文为进一步评价界面反应程度、指导复合材料工艺研究提供了有效的手段.  相似文献   

12.
通过比较SiCP/1100A l 和SiCP/7075A l 两种复合材料的界面状况和弹性变形特点发现:两种复合材料界面结合状况的不同导致材料弹性模量相差较大, 界面把载荷从基体传递到增强体是复合材料弹性变形阶段的重要强化机制, 而且强化机制的作用发挥取决于基体与增强体之间的界面结合力。   相似文献   

13.
原位合成TiB2/ ZL109 复合材料的高温蠕变行为   总被引:6,自引:0,他引:6       下载免费PDF全文
采用原位合成方法制备了TiB2 超细颗粒增强ZL109 复合材料, 对材料进行了高温拉伸蠕变实验。实验结果表明, 复合材料在高温恒应力条件下, 表现出高的名义应力指数和高的名义蠕变激活能, 优于纯Al 和ZL109 合金, 而且比常规外加颗粒复合材料具有更好的高温蠕变性能。引入门槛应力概念, 复合材料的蠕变实验结果能够用微观结构不变模型来解释, 说明复合材料的蠕变受到基体点阵扩散的控制。复合材料的蠕变断裂行为可以用Monkman2Grant 经验公式来描述, 蠕变断裂特征为延性断裂。  相似文献   

14.
纤维长度对M/ZL109复合材料强度及可靠性的影响   总被引:1,自引:0,他引:1  
对在相同的挤压工艺参数的条件下,用具有不同的长度分布及平均长度的莫来石短纤维与ZL109复合得到复合材料,然后比较这些复合材料的抗拉强度及其分散度,考察和分析了纤维长度分布状况及平均长度对复合材料的强度及强度数据分散性的影响规律。  相似文献   

15.
SiCf/Al复合丝变形损伤过程的原位观察   总被引:2,自引:0,他引:2       下载免费PDF全文
采用扫描电镜原位观察方法研究了束丝SiC纤维增强铝复合丝在低频疲劳和静拉伸过程中的损伤过程。实验发现,经过较短时间的疲劳加载或在较低的载荷下就出现纤维裂纹,裂纹向基体方向扩展,没有明显的界面脱粘现象。损伤过程可分为三个阶段,包括以纤维裂纹萌生为主的损伤起始阶段、以纤维多次断裂和基体裂纹扩展为主的损伤累计阶段以及裂纹迅速扩展和主裂纹连接的失稳破坏阶段。根据剪滞模型计算的表观界面强度表明该复合丝为强结合界面。  相似文献   

16.
涂层对复合材料残余应力的影响   总被引:5,自引:1,他引:5       下载免费PDF全文
由于复合材料组分的热物理性能不同引起的残余应力是影响复合材料性能的一个重要因素,有必要对其进行认真的研究.本文利用热弹性力学值解,提出了在单向纤维增强复合材料体系中,纤维表面附着涂层的复合材料残余应力的分析模型.  相似文献   

17.
本文利用声发射技术,成功地测出 SiC(CVD)单纤维增强 Al 基复合材料在拉伸过程中纤维的平均断裂长度,并由萃取纤维的方法加以验证。再用微观力学模型,计算出纤维与基体之间的界面剪切强度。  相似文献   

18.
C/C复合材料的界面演化规律   总被引:6,自引:0,他引:6  
研究了单丝界面和纤维束界面结构在细编穿刺C/C复合材料制备过程中的演化规律以及两种界面剪切强度随着生产周期增加的不同变化趋势.在C/C的制备过程中单丝界面和纤维束界面的形成速度不同,单丝界面优先得到完善,经过四个周期界面剪切强度既可达到最高水平;而束界面剪切强度在六个周期后才达到较高水平.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号