首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 62 毫秒
1.
黄河内蒙古河段非汛期和汛期冲淤量计算方法   总被引:1,自引:0,他引:1  
基于多沙河流“多来多排”的经验输沙公式,建立了考虑上站来沙量、前期河床累计淤积量、临界输沙水量及干支流泥沙粒径影响的非汛期和汛期输沙量一般表达式。在此基础上,根据黄河内蒙古河段1952-2010年实测的水沙资料,将其应用于黄河内蒙古河段巴彦高勒—三湖河口河段、三湖河口—头道拐河段以及巴彦高勒—头道拐全河段非汛期和汛期输沙量的计算,并应用输沙率法计算了各河段1952-2010年的非汛期和汛期冲淤量及其相应的累计冲淤量。通过输沙量、冲淤量和累计冲淤量计算值与实测值的对比表明,各河段非汛期和汛期输沙量、冲淤量及相应的累计淤积量计算值与实测值的吻合较好,其中非汛期和汛期输沙量计算值和实测值之间的相关系数R2分别约为0.93和0.97;非汛期和汛期冲淤量计算值与实测值之间的相关系数R2分别约为0.80和0.90;非汛期和汛期累计冲淤量之间的相关系数R2分别约为0.94和0.99。结果表明,就吻合程度而言,累计冲淤量优于年冲淤量,汛期优于非汛期。本文建立的冲淤量方法能够很好模拟该河段长历时的非汛期和汛期冲淤过程,可为黄河内蒙古河段输沙量及长期淤积发展趋势的分析提供科学依据。  相似文献   

2.
沈逸  吴保生  王彦君  覃超  郑珊 《地理学报》2023,(11):2735-2749
1999年小浪底水库投入运用以来,黄河下游河道发生持续冲刷,其时空变化过程复杂。基于滞后响应模型单步模式推导得到了黄河下游累计冲淤量的计算公式,2000—2020年计算值与实测值之间的决定系数R2达0.99。当前,黄河下游处于持续冲刷之中,冲刷速度逐渐变慢,当前时段的平衡值与计算值的差异减小,河床冲刷正在逐渐趋向于平衡。基于悬移质泥沙不平衡输沙方程得到了黄河下游主槽单位河长累计冲刷量空间分布的计算公式,2003—2015年计算值与实测值之间的决定系数R2在0.98~0.99之间,相对误差多年平均值为6.2%。结果表明,在当前黄河下游来沙减少,河道发生持续冲刷的背景下,就多年平均情况而言,累计淤积量调整完成一半所需的时间约为3.0 a,完成95%所需的时间约为13.0 a;且随着冲刷的持续发展,黄河下游累计冲刷量的空间分布在逐渐趋于均匀。本文的结果可为分析黄河下游复杂时空变化过程提供参考。  相似文献   

3.
王彦君  吴保生  钟德钰 《地理学报》2020,75(7):1494-1511
准确把握环境变化下前期水沙条件对当前河床形态调整的影响,建立非平衡态河床形态调整的模拟方法,对深化河床非平衡调整过程的认识至关重要。基于黄河下游花园口—利津河段1965—2015年的水沙和沿程82个大断面数据,首先统计分析了不同河段主槽断面形态参数(面积、河宽、水深和河相系数)的调整过程及其对水沙变化的响应规律;进而以水沙因子作为主槽断面形态调整的主控因素,采用滞后响应模型的多步递推模式,建立了其对前期水沙条件变化的滞后响应模型。结果表明,各河段面积、河宽和水深经历了减小—增加—减小—增加的变化过程,并且其与4 a滑动平均流量和含沙量之间分别呈正相关和负相关;而河相系数孙口以上段整体减小,孙口以下段呈增加—减小—增加—减小的变化过程,除花高段1965—1999年外,其与流量呈负相关,与含沙量呈正相关。滞后响应模型在黄河下游主槽断面形态对前期水沙条件响应过程的应用表明,各参数模型计算值与实测值符合程度均较高,模型能够很好地模拟主槽断面形态对水沙变化的响应调整过程,模型计算结果显示主槽断面形态调整受当年在内的前8 a水沙条件的累积影响,当年和前7 a水沙条件对当前断面形态的影响权重分别约为30%和70%。本文模型有助于深化前期水沙条件对当前河床形态调整影响机理的认识,并为未来不同水沙情形下主槽断面形态的预测提供了有效计算方法。  相似文献   

4.
By decomposing and reconstructing the runoff information from 1965 to 2007 of the hydrologic stations of Tuotuo River and Zhimenda in the source region of the Yangtze River, and Jimai and Tangnaihai in the source region of the Yellow River with db3 wavelet, runoff of different hydrologic stations tends to be declining in the seasons of spring flood, summer flood and dry ones except for that in Tuotuo River. The declining flood/dry seasons series was summer > spring > dry; while runoff of Tuotuo River was always increasing in different stages from 1965 to 2007 with a higher increase rate in summer flood seasons than that in spring ones. Complex Morlet wavelet was selected to detect runoff periodicity of the four hydrologic stations mentioned above. Over all seasons the periodicity was 11-12 years in the source region of the Yellow River. For the source region of the Yangtze River the periodicity was 4-6 years in the spring flood seasons and 13-14 years in the summer flood seasons. The differences of variations of flow periodicity between the upper catchment areas of the Yellow River and the Yangtze River and between seasons were considered in relation to glacial melt and annual snowfall and rainfall as providers of water for runoff.  相似文献   

5.
Based on an empirical sediment transport equation that reflects the characteristics of “more input, more output” for sediment-laden flow in rivers, a general sediment transport expression was developed, which can take into account the effects of upstream sediment input, previous cumulative sediment deposition, critical runoff for sediment initiation, and the differences in sediment particle sizes between the mainstream and tributaries. Then, sediment load equations for non-flood and flood seasons for the sub-reaches from Bayangaole to Sanhuhekou and from Sanhuhekou to Toudaoguai, as well as the whole Inner Mongolia reach from Bayangaole to Toudaoguai, were formulated based on data collected between 1952 and 2010. The corresponding sediment deposition and the cumulative values at each river reach were calculated using the proposed sediment transport equations for the period 1952 to 2010 according to the principle of sediment conservation. Comparisons between the calculated and measured values using the proposed sediment load equations for the sub-reaches and the entire reach showed that the calculated sediment load and sediment deposition and the corresponding cumulative values in the flood and non-flood seasons were in good agreement with the measured values. These results indicated that the proposed methods can be applied to calculate the sediment load and the associated sediment deposition in the flood and non-flood seasons for long-term trend analysis of sediment deposition in the Inner Mongolia reach of the Yellow River.  相似文献   

6.
Based on the mean yearly precipitation and the total yearly evaporation data of 295 meteorological stations in China in 1951–1999, the aridity index is calculated in this paper. According to the aridity index, the climatic regions in China are classified into three types, namely, arid region, semi-arid region and humid region. Dry and wet climate boundaries in China fluctuate markedly and differentiate greatly in each region in the past 50 years. The fluctuation amplitudes are 20–400 km in Northeast China, 40–400 km in North China, 30–350 km in the eastern part of Northwest China and 40–370 km in Southwest China. Before the 1980s (including 1980), the climate tended to be dry in Northeast China and North China, to be wet in the eastern part of Northwest China and very wet in Southwest China. Since the 1990s there have been dry signs in Southwest China, the eastern part of Northwest China and North China. The climate becomes wetter in Northeast China. Semi-arid region is the transitional zone between humid and arid regions, the monsoon edge belt in China, and the susceptible region of environmental evolution. At the end of the 1960s dry and wet climate in China witnessed abrupt changes, changing wetness into dryness. Dry and wet climate boundaries show the fluctuation characteristics of the whole shifts and the opposite fluctuations of eastward, westward, southward and northward directions. The fluctuations of climatic boundaries and the dry and wet variations of climate have distinctive interdecadal features.  相似文献   

7.
Based on the mean yearly precipitation and the total yearly evaporation data of 295 meteorological stations in China in 1951-1999, the aridity index is calculated in this paper. According to the aridity index, the climatic regions in China are classified into three types, namely, arid region, semi-arid region and humid region. Dry and wet climate boundaries in China fluctuate markedly and differentiate greatly in each region in the past 50 years. The fluctuation amplitudes are 20-400 km in Northeast China, 40-400 km in North China, 30-350 km in the eastern part of Northwest China and 40-370 km in Southwest China. Before the 1980s (including 1980), the climate tended to be dry in Northeast China and North China, to be wet in the eastern part of Northwest China and very wet in Southwest China. Since the 1990s there have been dry signs in Southwest China, the eastern part of Northwest China and North China. The climate becomes wetter in Northeast China. Semi-arid region is the transitional zone between humid and arid regions, the monsoon edge belt in China, and the susceptible region of environmental evolution. At the end of the 1960s dry and wet climate in China witnessed abrupt changes, changing wetness into dryness. Dry and wet climate boundaries show the fluctuation characteristics of the whole shifts and the opposite fluctuations of eastward, westward, southward and northward directions. The fluctuations of climatic boundaries and the dry and wet variations of climate have distinctive interdecadal features.  相似文献   

8.
过去45年中国干湿气候区域变化特征   总被引:24,自引:4,他引:24  
利用中国1960-2004年降水、平均气温、风速和相对湿度等资料,分别采用降水指数和干湿分类函数作为干湿区域的划分标准,将中国划分成三个干湿等级的区域:干旱区、半干旱区和湿润区。结果发现无论以哪种指数作为衡量干湿的标准,我国过去45年的干旱总面积,即干旱区面积和半干旱区面积之和,均为扩大趋势,湿润面积则为减小趋势,这种情况在近十年表现得尤为显著。而半干旱区面积在分析时段变化的幅度最大,是干湿变化的敏感区。但两种结果之间也存在不同:降水指数的结果表明干旱区和湿润区的面积减小,半干旱区的面积增大;而干湿分类函数得到的各个干湿区域的面积则表明干旱区的增大,半干旱区和湿润区的减小。从定量的角度讲,干湿分类函数估算的干旱区面积的45年平均值比降水指数估算的干旱区面积的45年平均值约大15%,其估算的半干旱面积的45年平均值比降水指数的结果约小9%,而两者湿润区面积的45年平均值相差约6%。最后给出了仅分析降水指数就能反映干湿状况的地区和必须分析干湿分类函数才能确定干湿状况的区域。  相似文献   

9.
黄河内蒙河段河床冲淤演变特征及原因   总被引:4,自引:0,他引:4  
利用黄河内蒙段1962-2000年间4期大断面观测资料,计算了各期河床冲淤和河槽形态指标。发现从1962-2000年间前20年、中间9年及后9年,内蒙河段河槽500m2过水面积下河底高程发生了降低-升高-再升高的过程;河槽漫滩过水面积经历了升高-降低-再降低的过程,2000年只有1982年的大约一半;滩地经历了持续淤积过程,平均抬升0.25m;河槽宽深比值经历了变化不显著-增加-减小的过程。分析结果表明:气候变化、引水、水库拦沙和重点产沙支流来沙变化在河床冲淤和河床形态调整中作用较大;水库对径流的年内调节对1982年后河槽淤积贡献较大;来水来沙变化下河流多要素自动调整是造成河槽形态变化过程复杂的原因。  相似文献   

10.
利用1960—2018年锡林河流域周边13个气象站的逐日气象资料,采用世界粮农组织(Food and Agriculture Organization of the United Nations,FAO)推荐的Penman-Monteith公式计算各气象站多年潜在蒸散发量及相对湿润度指数。通过利用主成分分析、相关分析和偏相关分析,探讨了锡林河流域潜在蒸散发、地表干湿状况多年变化规律;分析了影响潜在蒸散发的主要气象因子及各气象要素间的相互作用;着重讨论了锡林河流域潜在蒸散发的周期变化及其与相对湿润度指数、各气象要素的相互作用。结果表明:流域近59 a潜在蒸散发整体呈现增长趋势,且上升趋势显著,存在显著增加—减小交替的多尺度时频变化特征和多主周期变化规律;各气象要素中潜在蒸散发对温度的响应较大,平均风速次之;平均相对湿度受到潜在蒸散发的影响较大,降水次之。整个流域环境有不显著的变湿润趋势。  相似文献   

11.
廉陆鹞  刘滨辉 《干旱区地理》2019,42(6):1301-1309
利用西北地区1960—2017年68个站点逐日降雨气象数据,分别将日降雨小于(大于等于)0.1 mm和1 mm定义为旱日(湿日),从干期和湿期变化特征的角度分析西北地区雨日年内分配变化。结果表明:西北地区东部年降雨量变化不明显,降雨频率下降,平均降雨强度增加;西北地区西部年降雨量、降雨频率和平均降雨强度均呈现增加趋势,平均降雨强度增加主要是由于降雨量增加速率快于降雨频率增加速率。结合干期和湿期变化特征,发现西北地区东部虽然干期旱日总数增加,但干期平均长度、干期次数和最长干期旱日数变化不明显,同时湿期湿日数和次数减少,说明西北地区东部在降雨量不变情况下,降雨更加集中。在西北地区西部,干期次数增加,但干期旱日总数、干期平均长度以及最长干期旱日数减少,湿期湿日数和湿期次数增加,湿期平均长度不变,西北地区西部在降雨量和降雨频率增加过程中,干期持续时间缩短,对该区域农业生产和生态环境有利。另外,使用不同阈值会影响特征值变化趋势大小及其显著性,甚至会得到相反的变化趋势,说明选择合理阈值对于研究降雨、干期以及湿期变化十分重要,需要结合区域气候特征进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号