首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have investigated the electrical properties and interfacial reactions of the Si/Ti-based ohmic contacts to Si-doped n-GaN grown by metal organic chemical vapor deposition and the electrical properties were related to the material reactions. Si/Ti contact system was selected because Ti silicides have a low work function comparable to Al and also Si was used widely as an n-type dopant. As the annealing temperature increased, the specific contact resistance of Si/Ti-based ohmic contacts decreased and showed minimum contact decreased and showed minimum contact resistance as low as 3.86 10?6 cm2 after annealing at 900°C for 3 min under N2 ambient. Our experimental results show that the ohmic behavior of Si/Ti-based contact, were attributed to the low barrier height of Ti-silicide/GaN interface, which was formed through the interfacial reaction between Si and Ti layers. In order to clarify the current conduction mechanism of Si/Ti-based contact, temperature dependent contact resistance measurement was carried out for Au(1000 Å)/Ti(400 Å)/Si(1500 Å)/Ti(150 Å) contact system after annealing at 700°C for 3 min. The contact resistance of Si/Ti-based ohmic contact decreased exponentially with the measuring temperature and so it can be concluded that current flows over the low barrier height by thermionic emission.  相似文献   

2.
Formation and temperature stability of sputter deposited gold ohmic contacts to molecular beam epitaxially grown p-type ZnTe (doped with nitrogen to a free hole concentration of ≈3 × 1018 cm3) have been studied using current-voltage (I-V), Auger electron spectroscopy, secondary ion mass spectrometry, and optical and scanning electron microscopy. The I-V characteristics of ≈1500Å Au/p-ZnTe contacts were measured as-deposited and after heat treatments at 150, 200, 250, and 350°C for 15 min intervals up to 90 min. As deposited, the contacts were poor Schottky contacts, but became ohmic after 15 min at all temperatures. There was an increased resistance at t>15 min for T≤250°C, and a very large resistance increase upon heat treatment for all times at 350°C. The interface between the metallization and ZnTe was initially very planar, and remained planar upon formation of the ohmic contact. Upon heating at T>250°C, Au diffused into ZnTe. The ohmic behavior of the Au/p-ZnTe contacts is attributed to this diffusion which created a highly doped near-surface region in the ZnTe. Microscopy showed that Au also migrated across the ZnTe surface forming an extended reaction zone (≈100 μm) around the dot contact at T≥250°C.  相似文献   

3.
The thermal stability of ohmic contact to n-type InGaAs layer is investigated. When Ni/Ge/Au is used as the contact metal, the characteristics of the ohmic contact are degraded after thermal treatment. The specific contact resistance of (Ni/Ge/Au)-InGaAs ohmic contact after annealing at 450°C is about 15 times larger than that of as-deposited sample. This is due to the decomposition of InGaAs and the interdiffusion of Ga and Au. A new phase of Au4ln appears after annealing at 300°C. While in the case of Ti/Pt/Au, Au does not penetrate into the InGaAs layer as revealed by secondary ion mass spectroscopy. The specific contact resistance of (Ti/Pt/Au)-InGaAs ohmic contact after annealing at 450°C is eight times larger than that of as-deposited sample. Therefore, the thermal stability of (Ti/Pt/Au)-InGaAs ohmic contact is better than that of (Ni/Ge/Au)InGaAs ohmic contact.  相似文献   

4.
The aim of this study is to improve the electrical properties of ohmic contacts that plays crucial role on the performance of optoelectronic devices such as laser diodes (LDs), light emitting diodes (LEDs) and photodetectors (PDs). The conventional (Pd/Ir/Au, Ti/Pt/Au and Pt/Ti/Pt/Au), Au and non-Au based rare earth metal-silicide ohmic contacts (Gd/Si/Ti/Au, Gd/Si/Pt/Au and Gd/Si/Pt) to p-InGaAs were investigated and compared each other. To calculate the specific contact resistivities the Transmission Line Model (TLM) was used. Minimum specific contact resistivity of the conventional contacts was found as 0.111 × 10−6 Ω cm2 for Pt/Ti/Pt/Au contact at 400 °C annealing temperature. For the rare earth metal-silicide ohmic contacts, the non-Au based Gd/Si/Pt has the minimum value of 4.410 × 10−6 Ω cm2 at 300 °C annealing temperature. As a result, non-Au based Gd/Si/Pt contact shows the best ohmic contact behavior at a relatively low annealing temperature among the rare earth metal-silicide ohmic contacts. Although the Au based conventional ohmic contacts are thermally stable and have lower noise in electronic circuits, by using the non-Au based rare earth metal-silicide ohmic contacts may overcome the problems of Au-based ohmic contacts such as higher cost, poorer reliability, weaker thermal stability, and the device degradation due to relatively higher alloying temperatures. To the best of our knowledge, the Au and non-Au based rare earth metal-silicide (GdSix) ohmic contacts to p-InGaAs have been proposed for the first time.  相似文献   

5.
The results of a study of the electrical and metallurgical properties of thin metallic layers deposited on InP for use as an ohmic contact are presented. A rapid thermal annealing system was used to alloy AuGe/Ni/Au contacts ton-type ion implanted InP. Rutherford backscattering and contact resistivity measurement were used to evaluate the structural and electrical characteristics of these rapid thermal alloyed thin films. Varying degrees of mixing between the metals and the semiconductor were found depending on the temperature and temperature-time cycle. These results were compared to furnace and graphite strip-heater alloying techniques. A correlation between the interface structure and the contact resistance was found. Temperatures between 430 and 450° C and alloying time of 2 sec have produced the best electrical results, with specific contact resistance as low as 2*10?7 Ω cm2 on semi-insulating InP which was Siimplanted with a peak concentration about 2*1018 cm?3. The optimum alloy temperature is marked by the onset of substantial wrinkling of the contact surface, whereas essentially smooth surfaces are obtained at temperatures below optimum. The depth of the alloyed ohmic contact is controlled by the time of heating and could be less than 1000Å.  相似文献   

6.
7.
采用磁控溅射的方法在p型GaAs衬底上沉积了Ti/Pt/Au金属薄膜,研究了退火工艺参数(温度和时间)对p-GaAs/Ti/Pt/Au欧姆接触性能的影响。结果表明:p-GaAs上制作的Ti/Pt/Au金属系统能在很短的退火时间(60 s)内形成很好的欧姆接触。过分延长退火时间,并不能改善系统的欧姆接触性能。退火温度在400~450℃时均可得到较好的欧姆接触。当退火温度为420℃,退火时间为120 s时,比接触电阻率达到最低,为1.41×10–6.cm2。  相似文献   

8.
We have investigated Nb single and Nb/Au metallization schemes for the formation of thermally stable ohmic contacts to p-GaN. It is shown that the asdeposited Nb and Nb/Au contacts exhibit rectifying behavior. However, both the contacts produce ohmic characteristics when annealed at 850°C. Measurements show that the 850°C Nb/Au and Nb contacts yield a specific contact resistance of 1.9×10−8 and 2×10−2 ωcm2, respectively. Schottky barrier heights are found to decrease with increasing annealing temperature. A comparison of the XRD and electrical results shows that the formation of gallide phases such as Ga-Nb and Ga-Au compounds, play a role in forming ohmic contacts. Atomic force microscopy results show that the surface morphology of the Nb contacts is fairly stable up to 850°C, while the Nb/Au contacts are slightly degraded upon annealing at 850°C.  相似文献   

9.
We report a low-resistance ohmic contact on undoped ZnO using a promising contact scheme of Ti/Al. Specific-contact resistivity, as low as 9.0 × 10?7 ωcm2, was obtained from the Ti (300 Å)/Al (3,000 Å) contact annealed at 300°C. It was found that TiO was produced, and the atomic ratio of Zn/O was dramatically increased after annealing at 300°C. This provides the evidence that a number of oxygen vacancies, acting as donors for electrons, were produced below the contact. This leads to the increase of electron concentration via the reduction of contact resistivity.  相似文献   

10.
The electrical properties of the ohmic contact systems Au/Pt/Ti/WSiN and Au/Pt/Ti to n+-InGaAs/GaAs layers grown by metalorganic vapor phase epitaxy were investigated and compared to each other. The thermal stability properties of these contact systems were characterized by accelerated stress tests at elevated temperatures and by complementary thin film x-ray diffraction analysis to evaluate the microstructural properties of degraded and nondegraded structures. The goal of these efforts was to develop stable, homogeneous emitter contacts for power heterojunction bipolar transistors. It was found that for both contact systems the best (specific) contact resistance Rc (ρ c) is about 0.05 Ωmm (2 × 10−7 Ωcm2) in the as-deposited state. Au/Pt/Ti/WSiN contacts show no degradation after aging at 400°C for more than 20 h. This is in contrast to standard Au/Pt/Ti contacts which significantly degrade even after short time annealing at 400°C. The good long-time stability of the Au/Pt/Ti/WSiN system is related to the advantageous properties of the reactively sputtered WSiN barrier layer.  相似文献   

11.
The electrical and thermal properties of Ru and Ru/Au ohmic contacts on two-step-surface-treated p-GaN have been investigated using current-voltage (I–V) measurements and Auger electron spectroscopy. It is shown that annealing at 700°C for 2 min in a flowing N2 atmosphere improves the I–V characteristics of the contacts. For example, the annealed Ru and Ru/Au schemes produce a specific contact resistance of 3.4 (±0.9)×10−3 and 1.2 (±1.1)×10−3 Ωcm2, respectively. It is also shown that annealing results in a large reduction (by ∼100 meV) in the Schottky barrier heights of the Ru and Ru/Au contacts, compared to the as-deposited ones. The electrical properties of the two-step-surface-treated Ru/Au contacts are compared with those of the conventionally treated contacts.  相似文献   

12.
Four vanadium-based contacts to n-type Al0.6Ga0.4N were compared in this work. Both V/Al/Pd/Au and V/Al/V/Au contacts with optimized layer thicknesses provided lower specific-contact resistances than did the previously reported V/Al/Pt/Au ohmic contact. Specific contact resistances of the V/Al/Pd/Au (15 nm/85 nm/20 nm/95 nm) and V/Al/V/Au (15 nm/85 nm/20 nm/95 nm) contacts were 3×10−6 Ω·cm2 and 4×10−6 Ω·cm2, respectively. On the other hand, an analogous V/Al/Mo/Au contact never became ohmic, even after it was annealed at 900°C for 30 sec. Compared to the V/Al/Pd/Au contact, the V/Al/V/Au contact required a less severe annealing condition (30 sec at 700°C instead of 850°C). The V/Al/V/Au contact also provided a smoother surface, with a root-mean-square (RMS) roughness of 39 nm.  相似文献   

13.
The influences of the As-outdiffusion and Au-indiffusion on the performances of the Au/Ge/Pd/n-GaAs ohmic metallization systems are clarified by investigating three different types of barrier metal structures Au/Ge/Pd/GaAs, Au/Ti/Ge/Pd/ GaAs, and Au/Mo/Ti/Ge/Pd/GaAs. The results indicate that As-outdiffusion leads to higher specific contact resistivity, whereas Au-indiffusion contributes to the turnaround of the contact resistivity at even higher annealing temperature. For Au/Mo/Ti/Ge/Pd/n-GaAs samples, they exhibit the smoothest surface and the lowest specific contact resistivity with the widest available annealing temperature range. Moreover, Auger electron spectroscopy depth profiles show that the existing Ti oxide for the Mo/Ti bilayer can very effectively retard Au-indiffusion, reflecting the onset of the turnaround point at much higher annealing temperature.  相似文献   

14.
Ta/Au ohmic contacts are fabricated on n-type ZnO (∼1 × 1017 cm−3) epilayers, which were grown on R-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). After growth and metallization, the samples are annealed at 300°C and 500°C for 30 sec in nitrogen ambient. The specific contact resistance is measured to be 3.2×10−4 Ωcm2 for the as-deposited samples. It reduces to 5.4×10−6 Ωcm2 after annealing at 300°C for 30 sec without significant surface morphology degradation. When the sample is annealed at 500°C for 30 sec, the specific contact resistance increases to 3.3 × 10−5 Ωcm2. The layer structures no longer exist due to strong Au and Ta in-diffusion and O out-diffusion. The contact surface becomes rough and textured.  相似文献   

15.
We have optimized the base electrode for InGaAs/InP based double heterojunction bipolar transistors with a buried emitter-base junction. For the buried emitter-base structure, the base metal is diffused through a thin graded quaternary region, which is doped lightly n-type, to make ohmic contact to the p+InGaAs base region. The metal diffusion depth must be controlled, or contact will also be made to the collector region. Several metal schemes were evaluated. An alloy of Pd/Pt/Au was the best choice for the base metal, since it had the lowest contact resistance and a sufficient diffusion depth after annealing. The Pd diffusion depth was easily controlled by limiting the thickness to 50?, and using ample Pt, at least 350?, as a barrier metal to the top layer of Au. Devices with a 500? base region show no degradation in dc characteristics after operation at an emitter current density of 90 kA/cm2 and a collector bias, VCE, of 2V at room temperature for over 500 h. Typical common emitter current gain was 120. An ft of 95 GHz and fmax, of 131 GHz were achieved for 2×4 μm2 emitter size devices.  相似文献   

16.
The thermal stability of the Cu/Cr/Ge/Pd/n+-GaAs contact structure was evaluated. In this structure, a thin 40 nm layer of chromium was deposited as a diffusion barrier to block copper diffusion into GaAs. After thermal annealing at 350°C, the specific contact resistance of the copper-based ohmic contact Cu/Cr/Ge/Pd was measured to be (5.1 ± 0.6) × 10−7 Ω cm2. Diffusion behaviors of these films at different annealing temperatures were characterized by metal sheet resistance, X-ray diffraction data, Auger electron spectroscopy, and transmission electron microscopy. The Cu/Cr/Ge/Pd contact structure was very stable after 350°C annealing. However, after 400°C annealing, the reaction of copper with the underlying layers started to occur and formed Cu3Ga, Cu3As, Cu9Ga4, and Ge3Cu phases due to interfacial instability and copper diffusion.  相似文献   

17.
Electrical properties of Ni/Au ohmic contacts on p-type GaN were interpreted with the change of microstructure observed under transmission electron microscopy. The contact resistivity was decreased from 1.3×10−2 to 6.1×10−4 Ωcm2 after annealing at 600°C. The reduction is due to the dissolution of Ga atoms into Au−Ni solid solution formed during annealing, via the generation of Ga vacancies. Thus, net concentration of holes increased below the contact, resulting in the reduction of contact resistivity. At 800°C, N atoms decomposed; reacted with Ni, and forming cubic Ni4N. Consequently, N vacancies, acting as donors in GaN, were generated below the contact, leading to the increase of contact resistivity to 3.8×10−2 Ωcm2.  相似文献   

18.
In this study, investigation on Au/Ti/Al ohmic contact to n-type 4H–SiC and its thermal stability are reported. Specific contact resistances (SCRs) in the range of 10−4–10−6 Ω cm2, and the best SCR as low as 2.8 × 10−6 Ω cm2 has been generally achieved after rapid thermal annealing in Ar for 5 min at 800 °C and above. About 1–2 order(s) of magnitude improvement in SCR as compared to those Al/Ti series ohmic systems in n-SiC reported in literature is obtained. XRD analysis shows that the low resistance contact would be attributed to the formation of titanium silicides (TiSi2 and TiSi) and Ti3SiC2 at the metal/n-SiC interface after thermal annealing. The Au/Ti/Al ohmic contact is thermally stable during thermal aging treatment in Ar at temperature in the 100–500 °C range for 20 h.  相似文献   

19.
We have investigated the annealing-induced improved electrical properties of In(10 nm)/ITO(200 nm) contacts with p-type GaN. The contacts become ohmic with a specific contact resistance of 2.75×10–3 Ω cm2 upon annealing at 650 °C in air. X-ray photoemission spectroscopy (XPS) Ga 2p core levels obtained from the interface regions before and after annealing indicate a large band-bending of p-GaN, resulting in an increase in the Schottky barrier height. STEM/energy dispersive X-ray (EDX) profiling results exhibit the formation of interfacial In-Ga-Sn-oxide. Based on the STEM and XPS results, the ohmic formation mechanisms are described and discussed. It is also shown that patterning by nano-imprint lithography improves the light output power of blue LEDs by 18–28% as compared to that of LEDs fabricated with unpatterned In/ITO contacts.  相似文献   

20.
Two Pd-based metallizations have been systematically studied, i.e., Au/Ge/Pd and Pd/Ge contacts to n-type InP, in an attempt to better understand the role of the metallization constituents in forming ohmic contacts. Ohmic contacts were obtained with minimum specific resistances of 2.5 × 10−6 Ω-cm2 and 4.2 × 10−6 Ω-cm2 for the Au/Ge/Pd and the Pd/Ge contacts, respectively. The annealing regime for ohmic contact formation is 300-375°C for the Au/Ge/Pd/InP system and 350-450°C for the Pd/GelnP system. Palladium, in both cases, reacts with InP to form an amorphous layer and then an epitaxial layer at low temperatures, providing good metallization adhesion to InP substrates and improved contact morphology. Ohmic contact formation in both contacts is attributed to Ge doping, based on the solid state reaction-driven decomposition of an epitaxial layer at the metallization/InP interface, producing a very thin, heavily doped InP layer. Gold appears to be responsible for the difference in contact resistance in the two systems. It is postulated that Au reacts strongly with In to form Au-In compounds, creating additional In site vacancies in the InP surface region (relative to the Au-free metallization), thereby enhancing Ge doping of the InP surface and lowering the contact resistance. Both contacts degrade and ultimately become Schottky barriers again if over annealed, due to consumption of additional InP, which destroys the heavily doped InP layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号