首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulsed electromagnetic fields (PEMFs) are known to be effective in the stimulation of cultured osteoblasts and in vivo healing of delayed and nonunion fractures. In the present in vitro study the effects of PEMFs on osteoblastic cell cultures (MG63 human osteoblast-like cells) grown in the presence of poly-methylmethacrylate (PMMA) and of a biomimetic bone substitute made of a PMMA matrix added with alfa-tricalcium phosphate (PMMA+alpha-TCP) were evaluated, to assess the biological response at the cell-biomaterial interaction. Cultures were stimulated with PEMFs (75 Hz, 2.3 mT, 1.3-ms pulse duration) 12 h/day for 3 days and evaluations (MTT, ALP, OC, PICP, TGFbeta-1, IL-6) were performed at 3 and 6 days. PMMA had a negative effect on osteoblasts, whereas PMMA+alpha-TCP enhanced production of ALP, PICP, OC and TGFbeta-1, and reduced IL-6 levels. Cells responded positively to PEMF stimulation even when cultured with a poorly biocompatible material, such as PMMA. This effect was more evident in the presence of PMMA+alpha-TCP (further improvement in proliferation and synthetic activity) both at 3 and at 6 days. The properties of PMMA+alpha-TCP look promising, and the present results support the use of PEMFs to improve tissue response to biomaterials implanted as bone substitutes.  相似文献   

2.
Porous composites made of poly(L, DL-lactide) (PLA) and alpha-tricalcium phosphate (alpha-TCP) or the glass ceramic, GB14N, respectively, were investigated in a loaded implant model in sheep. Six, 12 and 24 months after implantation histological and biomechanical evaluation were performed and compared to autogenous bone transplants. No significant differences were observed between the composites. After 6 months, the interconnecting pores of the alpha-TCP-composite and the GB14N-composite were filled with newly formed bone (14 +/- 5% or 29 +/-15% of the implant, respectively) and soft tissue (30 +/-9% or 21 +/-12% of the implant, respectively). Only a mild inflammatory response was observed. The reaction was similar after 12 months. However, after 24 months a strong inflammatory reaction was seen. The newly formed bone was partly osteolytic. The adverse reaction occurred simultaneously to a significant reduction of the PLA component. The histological results were reflected by the biomechanical outcomes. Both composites showed compression strengths in the range of the autologous bone graft until 12 months of implantation. After 2 years, however, the strengths were significantly decreased. It is concluded that the new composites cannot yet be used for clinical application. An improvement in biocompatibility might be reached by a better coordination of the degradation times of the polymer and the ceramic component.  相似文献   

3.
The purpose of the present study was to compare alpha- and beta-tricalcium phosphate (TCP) as bone graft material for augmenting highly resorbed alveolar ridges. The cranial bones of 15 rabbits were used. Three titanium chambers filled with porous blocks of alpha-TCP, beta-TCP, or blood clots were placed in each slit. The two TCP blocks had similar inner/outer structures and purities. Animals were sacrificed after 2, 4, and 8 weeks. Specimens were embedded in polyester resin as nondecalcified specimens, and evaluated both histologically and histomorphometrically. In both TCP groups, blocks had hardly degraded at 2 weeks while in the alpha-TCP group, the block had notably started degrading after 4 weeks. In the beta-TCP group, degradation began at 4 weeks and this degradation had increased just slightly after 8 weeks. The alpha-TCP block degraded significantly more than the beta-TCP block. Residual alpha-TCP particles surrounded by newly formed bone decreased over time, and both particles and newly formed bone were simultaneously absorbed by osteoclast-like cells. These observations suggest that residual alpha-TCP particles surrounded by newly formed bone may disappear progressively from bone and could be incorporated into the bone remodeling cycle in combination with newly formed bone.  相似文献   

4.
This in vivo study investigated the efficiency of an injectable calcium phosphate bone substitute (IBS) for bone regenerative procedures through non-destructive three-dimensional (3D) micro-tomographic (microCT) imaging, biomechanical testing with a non-destructive micro-indentation technique and 2D scanning electron microscopy (SEM) analysis. The injectable biomaterial was obtained by mixing a biphasic calcium phosphate (BCP) ceramic mineral phase and a cellulosic polymer. The BCP particles were 200-500 microm or 80-200 microm in diameter. The injectable material was implanted for 6 weeks into critical-sized bone defects at the distal end of rabbit femurs. Extensive new bone apposition was noted with both 2D and 3D techniques. Micro-CT showed that newly formed bone was in perfect continuity with the trabecular host bone structure and demonstrated the high interconnectivity of the restored bone network. For both IBS formulations, SEM and microCT gave very close measurements. The only detected significant difference concerned the amount of newly formed bone obtained with IBS 80-200 that appeared significantly higher with microCT analysis than with SEM (p=0.00007). Student t-tests did not show any significant difference in the amount of newly formed bone and remaining ceramic obtained from microCT analysis or SEM. Regression analysis showed satisfactory correlation between both the amount of newly formed bone and remaining ceramic obtained from microCT or SEM. For IBS 200-500, the newly formed bone rate inside the defect was 28.0+/-5.2% with SEM and yield strength of the samples was 18.8+/-5.4 MPa. For IBS 80-200, the newly formed bone rate inside the defect was 31.7+/-5.1% with SEM and yield strength of the samples was 26.8+/-4.5 MPa. Yield strength appeared well correlated with the amount of newly formed bone, specially observed with microCT. This study showed the ability of non-destructive techniques to investigate biological and mechanical aspects of bone replacement with injectable biomaterials.  相似文献   

5.
Poly(methyl methacrylate) (PMMA) is by far the most frequently used bone substitute material for vertebroplasty. However, there are serious complications, such as cement leakage and an increased fracture rate of the adjacent vertebral bodies. The latter may be related to the mechanical properties of the augmented segment within the osteoporotic spine. A possible counter-measure is prophylactic augmentation at additional levels, but this aggravates the risk for the patient. Introduction of pores is a possible method to reduce the inherent high stiffness of PMMA. This study investigates the effect of porosity on the mechanical properties of PMMA bone cement. Different fractions of a highly viscous liquid were mixed into the PMMA during preparation. An open-porous material with adjustable mechanical properties resulted after removal of the aqueous phase. Different radiopacifiers were admixed to investigate their suitability for vertebroplasty. The final material was characterized mechanically by compressive testing, microscopically and radiologically. In addition, the monomer release subsequent to hardening was measured by means of gas chromatography. The Young's modulus in compression could be varied between 2800 +/- 70 MPa and 120 +/- 150 MPa, and the compression ultimate strength between 170 +/- 5 MPa and 8 +/- 9 MPa for aqueous fractions ranging between 0 and 50% of volume. Only a slight decrease of the Young's modulus and small changes of ultimate strength were found when the mixing time was increased. An organic hydrophilic and lipophilic radiopacifier led to a higher Young's modulus of the porous material; however, the ultimate strength was not significantly affected by adding different radiopacifiers to the porous cement. The radiopacity was lost after washing the aqueous phase out of the pores. No separation occurred between the aqueous and the PMMA phase during injection into an open porous ceramic material. The monomer released was found to increase for increasing aqueous fractions, but remained comparable in magnitude to standard PMMA. This study demonstrates that a conventional PMMA can be modified to obtain a range of mechanical properties, including those of osteoporotic bone.  相似文献   

6.
Porous composite materials made of poly(L, DL-lactide) and a ceramic component, alpha-tricalcium phosphate (alpha-TCP) or one of the rapidly resorbable glass ceramics, GB9N or GB14N, respectively, were developed to be used as bone substitutes. The present article describes the mechanical properties and the in vitro degradation characteristic of the different composite materials. The yield strength, the elastic modulus, and the molecular weight were measured after in vitro degradation up to 78 weeks. The initial strengths of the alpha-TCP composite (12.5 +/- 0.7 MPa) was higher than that of the GB9N and GB14N composites (8.3 +/- 0.2 MPa and 10.9 +/- 0.2 MPa, respectively). The initial elastic moduli of the composites were between 450 and 650 MPa. The mechanical properties remained constant until a degradation period of 26 weeks. Then they decreased continuously until they were completely lost at week 52. The molecular weight (M(w)) decreased steadily from 91,000 D in the case of the alpha-TCP composite and 78,000 D and 85,000 D in the case of the GB9N or GB14N composites, respectively, to about 10,000 D at week 78. It was concluded that the composites show adequate mechanical properties in the range of cancellous bone and a suitable degradation characteristic to be used as bone substitute materials.  相似文献   

7.
We have attempted to regenerate bone in a significant osseous defect with minimal invasiveness and good plasticity, and to provide a clinical alternative to autogenous bone grafts. Platelet-rich plasma (PRP) may enhance the formation of new bone and is nontoxic, nonimmunoreactive, and accelerates existing wound-healing pathways. We have used a combination of PRP as an autologous scaffold with in vitro-expanded mesenchymal stem cells (MSCs) to increase osteogenesis, compared with using the scaffold alone or autogenous particulate cancellous bone and marrow (PCBM). The newly formed bones were evaluated by radiography, histology, and histomorphometric analysis in the defects at 2, 4, and 8 weeks. According to the histological observations, the dog MSCs (dMSCs)/PRP group had well-formed mature bone and neovascularization compared with the control (defect only), PRP, and PCBM groups at 2 and 4 weeks. Histometrically, at 8 weeks newly formed bone areas were 18.3 +/- 4.84% (control), 29.2 +/- 5.47% (PRP), 61.4 +/- 3.38% (PCBM), and 67.3 +/- 2.06% (dMSCs/PRP). There were significant differences between the PCBM, dMSCs/PRP, and control groups. These results demonstrate that the dMSCs/PRP mixture is useful as a osteogenic bone substitute.  相似文献   

8.
Ni GX  Chiu KY  Lu WW  Wang Y  Zhang YG  Hao LB  Li ZY  Lam WM  Lu SB  Luk KD 《Biomaterials》2006,27(24):4348-4355
Clinical outcome of cemented implants to revision total hip replacement (THR) is not as satisfactory as primary THR, due to the loss of bone stock and normal trabecular pattern. This study evaluated a bioactive bone cement, strontium-containing hydroxyapatite (Sr-HA) bone cement, in a goat revision hip hemi-arthroplasty model, and compared outcomes with polymethylmethacrylate (PMMA) bone cement. Nine months after operation, significantly higher bonding strength was found in the Sr-HA group (3.36+/-1.84 MPa) than in the PMMA bone cement group (1.23+/-0.73 MPa). After detached from the femoral component, the surface of PMMA bone cement mantle was shown relatively smooth, whereas the surface of the Sr-HA bioactive bone cement mantle was uneven, by SEM observation. EDX analysis detected little calcium and no phosphorus on the surface of PMMA bone cement mantle, while high content of calcium (14.03%) and phosphorus (10.37%) was found on the surface of the Sr-HA bone cement mantle. Even higher content of calcium (17.37%) and phosphorus (10.84%) were detected in the concave area. Intimate contact between Sr-HA bioactive bone cement and bone was demonstrated by histological and SEM observation. New bone bonded to the surface of Sr-HA cement and grew along its surface. However, fibrous tissue was observed between PMMA bone cement and bone. The results showed good bioactivity of Sr-HA bioactive bone cement in this revision hip replacement model using goats. This in vivo study also suggested that Sr-HA bioactive bone cement was superior to PMMA bone cement in terms of bone-bonding strength. Use of bioactive bone cement may be a possible solution overcoming problems associated with the use of PMMA bone cement in revision hip replacement.  相似文献   

9.
Increased fracture risk has been reported for the adjacent vertebral bodies after vertebroplasty. This increase has been partly attributed to the high Young's modulus of commonly used polymethylmethacrylate (PMMA). Therefore, a compliant bone cement of PMMA with a bulk modulus closer to the apparent modulus of cancellous bone has been produced. This compliant bone cement was achieved by introducing pores in the cement. Due to the reduced failure strength of that porous PMMA cement, cancellous bone augmented with such cement could deteriorate under dynamic loading. The aim of the present study was to assess the potential of acute failure, particle generation and mechanical properties of cancellous bone augmented with this compliant cement in comparison to regular cement. For this purpose, vertebral biopsies were augmented with porous- and regular PMMA bone cement, submitted to dynamic tests and compression to failure. Changes in Young's modulus and height due to dynamic loading were determined. Afterwards, yield strength and Young's modulus were determined by compressive tests to failure and compared to the individual composite materials. No failure occurred and no particle generation could be observed during dynamical testing for both groups. Height loss was significantly higher for the porous cement composite (0.53+/-0.21%) in comparison to the biopsies augmented with regular cement (0.16+/-0.1%). Young's modulus of biopsies augmented with porous PMMA was comparable to cancellous bone or porous cement alone (200-700 MPa). The yield strength of those biopsies (21.1+/-4.1 MPa) was around two times higher than for porous cement alone (11.6+/-3.3 MPa).  相似文献   

10.
Yuan H  Yang Z  De Bruij JD  De Groot K  Zhang X 《Biomaterials》2001,22(19):2617-2623
Bone induction by different calcium phosphate biomaterials has been reported previously. With regard to (1) whether the induced bone would disappear with time due to the absence of mechanical stresses and (2) whether this heterotopically formed bone would give rise to uncontrolled growth, a long-time investigation of porous hydroxyapatite ceramic (HA), porous biphasic calcium phosphate ceramic (TCP/HA, BCP), porous alpha-tricalcium phosphate ceramic (alpha-TCP) and porous beta-tricalcium phosphate ceramic (beta-TCP) was performed in dorsal muscles of dog, for 2.5 years. Histological observation, backscattered scanning electron microscopy observation and histomorphometric analysis were made on thin un-decalcified sections of retrieved samples. Normal compact bone with bone marrow was found in all HA implants (n = 4) and in all BCP implants (n = 4), 48 +/- 4% pore area was filled with bone in HA implants and 41 +/- 2% in BCP implants. Bone-like tissue, which was a mineralised bone matrix with osteocytes but lacked osteoblasts and bone marrow, was found in all beta-TCP implants (n = 4) and in one of the four alpha-TCP implants. Both normal bone and bone-like tissues were confined inside the pores of the implants. The results show that calcium phosphate ceramics are osteoinductive in muscles of dogs. Although the quality and quantity varied among different ceramics, the induced bone in both HA and BCP ceramics did neither disappear nor grow uncontrollably during the period as long as 2.5 years.  相似文献   

11.
In previous studies, we have reported that the BMP-2-derived peptide KIPKASSVPTELSAISTLYL, corresponding to BMP-2 residues 73-92, binds to a BMP-2-specific receptor, and elevates both alkaline phosphatase activity and osteocalcin mRNA in the murine mesenchymal cell line, C3H10T1/2. This 73-92 peptide conjugated to a covalently crosslinked alginate gel induced ectopic bone formation in rat calf muscle, and activated osteoblasts to promote the repair of rat tibial bone defects. Here, we report repair of 20-mm long rabbit radial bone defects using the 73-92 peptide combined with a porous alpha-tricalcium phosphate (TCP) scaffold. In vitro, the 73-92 peptide was released from the porous alpha-TCP scaffold over more than one week. In vivo, radiomorphometric analysis showed that the 73-92 peptide combined with the porous alpha-TCP scaffold promoted calcification in the implanted area in a dose-dependent manner, and that 5 mg of the 73-92 peptide induced connection of 20-mm long defects, defects of critical size, 12 weeks after implantation. Histological examination revealed newly formed bone and a marrow cavity in the implanted area. The area of bone denser than 690 mg/cm(3) induced by the 73-92 peptide was nearly equal to that of the contralateral radius.  相似文献   

12.
Tissue responses around implanted polymethylmethacrylate (PMMA) particles were analyzed by in situ hybridization with digoxigenin-labeled procollagen alpha1(I) (COL), osteonectin, osteocalcin, and osteopontin (OPN) mRNA probes. PMMA particles (150-300 microm in diameter) were implanted into rat tibiae, and specimens were collected at 3, 5, 7, and 10 days after operation. New bone was formed centripetally, and bone-forming osteoblasts expressed all four kinds of mRNAs. A COL signal was expressed most strongly and widely. In the early stage, COL-positive cells were detected on and among particles sporadically. A COL signal was rarely detected in cells on the surfaces of the particles, suggesting that PMMA particles may suppress osteoblast differentiation. Osteonectin and osteocalcin mRNAs were expressed in bone-forming osteoblasts in a similar pattern by day 7. By contrast, an OPN signal was detected mainly on the particles, not only in COL-positive osteoblasts but also in COL-negative round cells. The latter cells had acid phosphatase activity, suggesting that they might be macrophages responding to a foreign body. At day 10, an OPN signal was detected continuously in multinucleated cells on PMMA particles, whereas new bone was formed away from particles. Our approach helped us to understand the initial cellular reaction to materials, which may determine their biocompatibility.  相似文献   

13.
A/J mice, as compared to C57BL/6J (B6) mice, have a significantly greater total femoral mineral (ash) content which correlates with an increased femoral stiffness (resistance to deformation), but also with an increased brittleness (catastrophic failure). To determine if this whole bone variation in mineral content is indicative of significant mineral and/or matrix variation at the tissue level, femora from 16-week-old female A/J and B6 mice were isolated, embedded in PMMA, sectioned and mounted on barium fluoride infrared windows for FTIRI analyses. In addition, preliminary studies of femora from C3H/HeJ (C3H) mice were conducted, since they have an ash content intermediate to A/J and B6. Mean values for mineral-to-matrix ratio were significantly different for A/J (8.4 +/- 0.8) and B6 (7.5 +/- 0.4), as were values for collagen cross-link maturity (1.8 +/- 0.05 and 3.2 +/- 0.1, respectively). C3H mice appeared to have a mineral-to-matrix ratio intermediate of A/J and B6, and cross-link maturity greater than both A/J and B6. B6 femora had similar carbonate-to-amide ratios, carbonate-to-mineral ratios and acid phosphate levels. Thus, whole bone differences in mineral content are concurrent with tissue-level variation in mineral content and collagen maturity in inbred mice. The greater stiffness and brittleness of A/J femora are likely due to differential biological control (osteoblast activity) of the amount of mineral.  相似文献   

14.
Intertransverse process spinal fusion is a common surgical procedure for the treatment of spinal disorders. In the present study, a porous hydroxyapatite (HA)/beta-tricalcium phosphate (beta-TCP) ceramic was tested as graft material using a rabbit lumbar transverse process (L5-L6) fusion model. The porous ceramic blocks were implanted onto the dorsal decorticated surface of the lumbar transverse processes. The specimens were harvested at the seventh week after implantation. Histomorphological observation revealed that the integration of HA/beta-TCP with the host bone of the transverse process occurred by both cancellous bone formation and cartilage formation. Scanning electron microscopy-wavelength dispersive X-ray spectrometry examinations showed significant differences in calcium, phosphorus, and sulfur contents in the newly formed tissues and the porous HA/TCP implants. Nanoindentations were used to evaluate the intrinsic mechanical properties of the implants and the newly formed tissues. The Young's moduli of the newly formed cartilage, new cancellous bone, and HA/TCP, were 0.66 +/- 0.02 GPa, 2.36 +/- 0.50 GPa, and 10.2 +/- 1.21 GPa, respectively. Nanoindentation results revealed degradation of the porous ceramics and incomplete calcification of the new cancellous bone at the seventh week after implantation. Nanoindentation appeared to be a useful technique for assessing the mechanical status of spinal fusion in animal models.  相似文献   

15.
Octacalcium phosphate (OCP) is resorbable bone regenerative material, but its brittleness makes it difficult to maintain its shape without restraint. We have engineered a scaffold constructed of synthetic OCP and porcine collagen sponge (OCP/Collagen) and investigated whether OCP/Collagen composite could improve bone regeneration. To examine this hypothesis, bone regeneration by the implantation of OCP/Collagen was compared with those by OCP and collagen. Radiographic and histological examination was performed and the percentage of newly formed bone (n-Bone%) in the defect was determined by a histomorphometrical analysis. OCP/Collagen, OCP, or collagen was implanted into the critical-sized defects in rat crania and fixed at 2, 4, or 8 weeks after implantation. OCP/Collagen improved the handling performance than the granules of OCP, and synergistically enhanced the bone regeneration beyond expectation, which were composed of bone nucleation by OCP and cell infiltration by collagen. Histomorphometrical analysis showed that n-Bone% +/- standard error treated with OCP/Collagen (48.4 +/- 5.14) was significantly higher than those with OCP (27.6 +/- 4.04) or collagen (27.4 +/- 5.69) in week 8. The present study suggests that the combination OCP with collagen elicited the synergistic effect for bone regeneration.  相似文献   

16.
In order to study the interaction of calcium phosphate coatings with bone tissue, coated titanium cylinders with a standard size were implanted in dog femora. Coatings were made by plasma spraying powders of hydroxylapatite, beta-whitlockite, and tetracalciumphosphate particles. The plasma spraying process turns beta-whitlockite into alpha-TCP. Bone bonding and bone formation were evaluated by mechanical push-out tests and histological observations. Hydroxylapatite and tetracalciumphosphate coatings show an interface strength after 3 months of implantation of 34.3 +/- 6.5 MPa and 26.8 +/- 3.9 MPa, respectively, while alpha-TCP and blanco titanium lead to an interface strength of 10.0 +/- 3.5 MPa and 9.7 +/- 1.3 MPa, respectively. Histological examinations revealed that hydroxylapatite and tetracalciumphosphate give rise to an excellent bone formation, while alpha-TCP and blanco titanium evoked remodeling and less bone contact.  相似文献   

17.
Porous nickel-titanium (NiTi) alloy is a promising new material for a bone graft substitute with good strength properties and an elastic modulus closer to that of bone than any other metallic material. The purpose of this study was to evaluate the effect of porosity on the osteointegration of NiTi implants in rat bone. The porosities (average void volume) and the mean pore size (MPS) were 66.1% and 259+/-30 microm (group 1, n=14), 59.2% and 272+/-17 microm (group 2, n=4) and 46.6% and 505+/-136 microm (group 3, n=15), respectively. The implants were implanted in the distal femoral metaphysis of the rats for 30 weeks. The proportional bone-implant contact was best in group 1 (51%) without a significant difference compared to group 3 (39%). Group 2 had lower contact values (29%) than group 1 (p=0.038). Fibrotic tissue within the porous implant was found more often in group 1 than in group 3 (p=0.021), in which 12 samples out of 15 showed no signs of fibrosis. In conclusion, porosity of 66.1% (MPS 259+/-30 microm) showed best bone contact (51%) of the porosities tested here. However, the porosity of 46.6% (MPS 505+/-136 microm) with bone contact of 39% was not significantly inferior in this respect and showed lower incidence of fibrosis within the porous implant.  相似文献   

18.
Characterization of a novel calcium phosphate/sulphate bone cement   总被引:8,自引:0,他引:8  
Apatitic cements have shown excellent biocompatibility and adequate mechanical properties but have slow resorption in the human body. To assure that new bone tissue grows into the bone defect, a certain porosity is necessary although hard to achieve in injectable cements with suitable mechanical properties. An attempt was made by mixing alpha-tricalcium phosphate (alpha-TCP), calcium sulphate hemihydrate (CSH) and an aqueous solution containing 2.5 wt% of Na(2)HPO(4). The aim was to obtain a material containing two phases: a) one apatitic phase (calcium-deficient hydroxyapatite; CDHA) and b) one resorbable phase (calcium sulphate dihydrate; CSD). alpha-TCP and CSH mixtures were produced at relative intervals of 20 wt%. The liquid-to-powder (L/P) ratio to obtain a paste was 0.32 mLg(-1). The highest compressive strength (34 MPa) was obtained for the pure alpha-TCP sample. The strength was, in a first approximation, directly correlated to the weight proportions of the powders. X-ray diffraction analysis showed that the relative intensity for CDHA increased linearly, and the one for CSD decreased exponentially, when the amount of alpha-TCP increased. Thus, CSH ceased to transform to CSD when the amount of alpha-TCP increased. Observations in environmental scanning electron microscopy confirmed the X-ray diffraction results. CSH-crystals (100 microm) were embedded in the HA-matrix permitting gradual porosity in the material when resorbed.  相似文献   

19.
Previous studies showed that natural coral implanted into bone tissue was gradually resorbed and progressively replaced by newly formed bone. The objectives of this study were to compare the fate of two Madreporian corals, Porites and Acropora, after implantation during 1 and 2 months into sheep and pig long bones. These materials are identical in composition (CaCo3) but differ in volume (49 +/- 2%, 12 +/- 4%, respectively) and mean size (250 vs. 500 microns) of porosities. The non-decalcified histological slices were observed under light microscopy. Implant resorption and new bone formation were quantified through an automatic image analysis system. Quantitative results showed that the larger the porosity volume, the greater was the coral resorption as well as the new bone apposition. Large differences were found between the two animal species. Histological findings were identical to those previously reported: implants were resorbed and progressively replaced by newly formed bone. Coral was found to be an osteoconductive biomaterial which acted as a scaffold for a direct osteoblastic apposition and consequently could be an interesting alternative to bone auto-, allo-, or xenografts.  相似文献   

20.
The purpose of the present study was to observe the biodegradation process of pure alpha-tricalcium phosphate (alpha-TCP) particles and to determine the efficacy of alpha-TCP as a space maintainer in a bone defect. We used 14 rabbits and prepared two cranial bone defects in each rabbit. One defect was left empty as a control, whereas the other was filled with alpha-TCP particles about 300 mum in diameter. Animals were sacrificed at 1 week, 4 weeks, and 8 weeks. The cranial bone was then embedded either in paraffin wax for the preparation of decalcified specimens, or in polyester resin for the preparation of nondecalcified specimens. All specimens were evaluated histologically and histomorphometrically. As a consequence of the degradation of alpha-TCP, a "reticulate structure" appeared in the particles at 1 week and new bone was observed in this structure at 8 weeks. The amount of new bone between the control and experimental groups was not significantly different at any of the time points. However, in the experimental group, new bone at the surface of alpha-TCP was evident even in the center of the defect whereas fibrous connective tissue was dominant in the control group. These results indicate that alpha-TCP is a degradable osteoconductive material that is able to act as a space maintainer for bone regeneration when applied to a bone defect. While there was no significant difference in total bone formation between the experimental and negative control groups, the space-maintaining and osteoconductive properties of the particles may result in more complete bone formation in longer-term studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号