首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
循环软化45碳钢和循环硬化304不锈钢的棘轮行为实验研究   总被引:1,自引:1,他引:0  
对循环软化45碳钢的单轴应力循环下的平均应力、应力幅值以及先前应变循环对棘轮效应的影响进行了实验研究;并对循环硬化的304不锈钢进行了多种非比例循环加载路径下路径形状、路径等效应力幅值、平均应变与平均应力对材料棘轮变形行为的影响实验.发现平均应力和应力幅值及其历史对于材料的棘轮行为都有很大的影响.  相似文献   

2.
杨超  吴昊 《固体力学学报》2021,42(5):518-531
本文对316L不锈钢进行了单轴与多轴非比例路径下的应力控制棘轮试验,考察了应力幅值、平均应力和加载历程对棘轮特性的影响。同时进行了应变控制循环试验以研究材料的应力松弛特性。试验结果表明轴向棘轮效应在对称剪切荷载下效果明显,同时棘轮应变随应力幅值和平均应力的增加而增加。研究了Chen-Jiao随动强化模型与Jiang-Sehitoglu随动强化模型采用的单轴与多轴参数对背应力分量增量方向的影响,将Chen-Jiao模型中的多轴系数替换为界面饱和率,并在此基础上引入新的参数对塑性模量系数进行修正,计算结果表明修正后的模型能提升应力控制下多轴棘轮的预测精度,并能很好的预测应力松弛现象,表明了新模型的正确性与有效性。  相似文献   

3.
在350℃和700℃下SS304不锈钢的非比例多轴循环变形行为进行了系统的实验研究。在此基础上,在统一粘塑性本构理论的框架下改进和发展了一个新的循环本构模型。该模型给出了新的背应力演化方程,引入了非比例度参量,考虑了温度效应和最大塑性应变幅值记忆效应,能够对材料的高温非比例多轴应变循环变形行为和棘轮行为进行统一描述。模型的模拟结果与实验结果比较表明:该模型对SS304不锈钢高温非比例多轴循环变形行为的描述比较合理。  相似文献   

4.
奥氏体不锈钢高温循环棘轮行为的实验研究   总被引:1,自引:0,他引:1  
对两种不锈钢材料(316L和304)进行了高温应力控制下的系统循环试验。对该类材料在应力循环下的平均应力、应力幅值及其历史对循环蠕变(棘轮效应)的影响进行了分析,同时也分析了环境温度的变化以及先前应变循环对后继应力循环的棘轮行为的影响。研究表明,两种不锈钢材料在高温非对称循环下的单轴棘轮行为基本相同,不但依赖于当前温度和加载状态,而且还依赖于先前加载历史。研究得到了不锈钢材料高温单轴循环棘轮行为的一些有意义的结果。  相似文献   

5.
304不锈钢室温和高温单轴循环塑性的实验研究   总被引:2,自引:0,他引:2  
对304不锈钢进行了室温和高温单轴应变控制和应力控制下的系统循环试验。揭示和分析了循环应变幅值、平均应变及其历史和温度历史对材料应变循环特性的影响以及应力幅值、平均应力及其历史以及温度对循环棘轮行为的影响。也讨论了应变循环和应力循环间交互作用对材料循环塑性行为的影响。研究表明,无益单轴应变循环特性还是非对称单轴应力循环下的棘轮效应不仅取决于当前温度和加载状态,而且强烈依赖于其加载历史。研究得到了一些有助于304不锈钢室温和高温单轴循环行为本构描述的结果。  相似文献   

6.
在Valanis的内时本构理论的框架中,引入内结构张量以反映由于非比例加载而引起金属材料的附加等向强化及异向强化效应,同时提出材料强化程度的度量采用沿路径法线方向的塑性应变分量来描述.这些考虑的有效性已经通过用所建模型对304不锈钢材料在一些典型非比例循环加载路径下的响应进行的理论预测得到了验证;将该模型应用于U71Mn材料室温单轴棘轮行为描述中,结果显示内结构张量的引入不仅能较好地反映应变控制下的非比例附加效应,而且也能较好地反映应力控制下塑性应变的累积及变化率.  相似文献   

7.
基于63Sn-37Pb钎料合金材料的多轴时相关循环变形行为及疲劳失效行为,提出了耦合损伤的多轴时相关理论模型及疲劳失效模型,模型引入了损伤演化方程,考虑了时相关效应及非比例路径效应,能较好地模拟材料在不同非比例加载路径下的循环变形行为及疲劳失效行为,较准确地预测多轴疲劳寿命.  相似文献   

8.
率相关非比例循环塑性内时本构模型   总被引:3,自引:0,他引:3  
将材料响应的总应力表示为平衡态应力和非平衡成过应力的和,分别定义描述率无关和率相关变形过程的内时,在平衡态响应的描写中,假定反映非比例加载效应的附加等等向强化和异向强化函数与沿应力迹法向的塑性应变分量的累积量相关,并在其中考虑加载路径几何性质变化的影响,建立一组率相关非比例循环塑性内时本构方程,对XCrNi18.9不锈钢在不同加载率下的单轴比例和多轴非比例响应进行预测,与Haupt和Lion的实验  相似文献   

9.
棘轮效应预测及其循环本构模型研究进展   总被引:12,自引:0,他引:12  
陈旭  焦荣  田涛 《力学进展》2003,33(4):461-470
棘轮应变累积广泛存在于压力容器和管道、轮轨接触疲劳、紧固连接和密封技术等工程问题中,是工程设计中必须考虑的重要因素.棘轮可以表现为单轴棘轮效应或多轴棘轮效应,材料的棘轮效应或结构的棘轮效应.本文介绍近年来棘轮效应的最新研究进展,对近年提出的描述材料棘轮效应的循环本构理论作了较详细的评述,对模型的预测能力和存在的问题进行了讨论,并对今后的工作提出了建议.   相似文献   

10.
对316L不锈钢的非比例循环粘塑性本构描述   总被引:1,自引:0,他引:1  
对循环硬化的316L不锈钢提出了一个考虑非比例循环加载下流动和硬化特性的粘塑性本构模型。模型中,通过随动硬化的背应力演化以各向同性阻力演化非比例循环路径及其历史的依赖关系来表征材料的非比例循环附加硬化和非比例循环流动特性,将模型用于预测316L不锈钢的圆形,正菱形应变路径的复杂循环变形行为,其预言结果与实验结果吻合很好。  相似文献   

11.
A new superposed rule of Mroz's kinematic hardening rule and Ziegler's kinematic hardening rule based on two-surface model is proposed in the paper. Some experimental results on ratchetting of 2014-T6 aluminum alloy are predicted very well under multiaxial loading. In addition the conformability of the model is discussed for transient cyclic hardening under two kinds of nonproportional cyclic loading paths, i.e. square and rhombic path. The project supported by the National Natural Science Foundation of China  相似文献   

12.
Cyclic ratchetting behavior of 1070 steel is studied under proportional and nonproportional loading with specific emphasis on the ratchetting rate decay mechanisms for large numbers of loading cycles. Under proportional loading, where the principal stress directions are unchanged, the ratchetting evolves in the mean stress direction. Under nonproportional loading, however, the ratchetting direction is determined by the loading path and can be different from the mean stress direction. The ratchetting rate decreases with increasing loading cycles, displaying a power law relationship with the number of loading cycles. The experimental ratchetting results indicate that under cyclic loading the material exhibits a tendency toward complying with a linear hardening rule with concomitant hysteresis loop closure. Based on the fundamental framework of plasticity theory and detailed evaluation of the stress-strain behaviors, the ratchetting can be classified into two basic types; Type I, which is identifiable with proportional loading where the ratchetting is due to the different values of the plastic modulus function at the symmetric loading points with respect to the mean stress state, and Type II, which represents nonproportional loading where the ratchetting is driven by the noncoincidence of the plastic strain rate vector and the translation direction of the yield surface (backstress rate vector). The Armstrong-Frederick-based plasticity models modified by Chaboche et al. and Bower are ill-suited for describing the experimental results of both types of ratchetting. The Ohno-Wang model, which introduces a threshold concept, can account for the ratchetting rate decay of Type II ratchetting, providing results that agree with experimental observations. Modification may be needed for the Ohno-Wang model so that the model can better describe Type I ratchetting.  相似文献   

13.
Uniaxial and multiaxial ratchetting tests were conducted at temperatures between 200 and 600 °C on modified 9Cr–1Mo steel, which exhibits both viscoplastic and cyclic softening behavior. Anomalous behavior was observed in the stress-controlled uniaxial ratchetting tests; the material exhibited outstanding ratchetting in the tensile direction under zero mean stress. Under the uniaxial conditions, the ratchetting deformation significantly depended on the loading rate and hold time in addition to parameters such as the maximum stress and stress ratio. The uniaxial ratchetting was also accelerated to a great extent when cyclic deformation was given before the ratchetting tests. Under the multiaxial conditions, the ratchetting depended on the steady stress, cyclic strain range and strain rate. The ratchetting progressed faster as the steady stress or strain range became larger, or the strain rate became smaller, as expected. Monotonic compression tests were carried out to investigate the reason for the rachetting under no mean stress. Strain range change tests were also conducted to investigate the effect of strain range on the cyclic softening behavior of the material in detail.  相似文献   

14.
Simulation capability on ratchetting of modified 9Cr–1Mo steel at 550 °C was discussed using several constitutive models in the present paper. It was revealed that the authors' previous model, which uses an Armstrong–Frederick kinematic hardening rule, has a strong tendency to overestimate both uniaxial and multiaxial ratchetting of the material. On the contrary, the Ohno–Wang (OW) I model tended to underestimate the uniaxial and multiaxial ratchetting. The OW II and III models predicted the uniaxial and multiaxial ratchetting with better accuracy. Regarding the uniaxial ratchetting under the zero mean stress condition described in part 1 of this study, none of the constitutive models was able to simulate it even qualitatively. On the basis of the OW I model, a constitutive model incorporating a tension–compression asymmetry was proposed to predict the ratchetting behavior under the zero mean stress condition. The simulation capability of the proposed model was discussed in comparison with that of the other constitutive models.  相似文献   

15.
This paper is concerned with two multi-mechanism based models for application to ratchetting effect. The 2M1C (2 Mechanisms and 1 Criterion) model and 2M2C (2 Mechanisms and Criteria) model, proposed by the authors in a previous article, are modified to incorporate (i) a corrective term in the computation of the local stresses; (ii) Burlet–Cailletaud’s fading memory term in the kinematic hardening evolution rule. Experimental data from the literature are selected to assess the models capability. Numerical results are obtained using the proposed models for a series of uni-axial and multi-axial ratchetting tests performed at different stress ranges of an austenitic stainless steel.  相似文献   

16.
17.
纯铝在单轴应力循环作用下棘轮行为的试验研究   总被引:4,自引:0,他引:4  
对纯铝进行了单轴应变控制和应力控制下的系统循环试验。对纯铝应变循环下的循环应变幅值、应变幅值历史、平均应变对循环特性的影响进行了揭示,对纯铝在非对称应力循环下的应力幅值、平均应力及其历史对循环蠕变〈即棘轮〉的影响进行了分析,得到了纯铝单轴循环行为的一些有意义的结果。  相似文献   

18.
The Mori-Tanaka approach is used to modelling metal particulate-reinforced brittle matrix composites under cyclic compressive loading. The J2-flow theory is considered as the relevant physical law of plastic flow in inclusions. Ratchetting of the composite is prevented by the strong constraint exerted by the matrix on the inclusions, even under the assumption of evanescent kinematic hardening. However, the weakening constraint power of the matrix caused by microfracture damage around inclusions is closely coupled with the plasticity of inclusion and leads to ratchetting even when the plastic deformation of inclusions is described by an isotropic hardening rule. A detailed parametric study has revealed that ratchetting is followed by either plastic or elastic shakedown, depending on the load amplitude, composite parameters and the mean length of microcracks.  相似文献   

19.
The time-dependent strain cyclic characteristics and ratchetting behaviours of SS304 stainless steel were investigated by uniaxial/multiaxial cyclic loading tests at room and elevated temperatures (350 and 700 °C). The effects of loading rate, peak/valley strain or stress holds, ambient temperature and non-proportional loading path on the cyclic softening/hardening and ratchetting behaviours of the material were discussed. It is shown that: the cyclic deformation of the material presents remarkable time-dependence at room temperature and 700 °C; the cyclic hardening feature and ratchetting strain depend significantly on straining or stressing rate, hold-time, ambient temperature and the non-proportionality of loading path; the time-dependent ratchetting is resulted from the slight opening of hysteresis loop and visco-plasticity together, and the viscosity is a dominating factor at 700 °C; at 350 °C, abnormal rate-dependence and quick shakedown of ratchetting are observed due to the dynamic strain aging of the material at this temperature. Some significant conclusions are obtained, which are useful to construct a constitutive model to describe the time-dependent ratchetting behaviour of the material. It is also stated that the unified visco-plastic constitutive model discussed here cannot provide reasonable simulation to the time-dependent ratchetting at 700 °C, especially to that with certain peak/valley stress hold, since the effect of the high viscosity on time-dependent ratchetting cannot be properly described by using a unified visco-plastic flow rule.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号